FFmpeg  2.6.3
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
aacsbr.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * AAC Spectral Band Replication decoding functions
26  * @author Robert Swain ( rob opendot cl )
27  */
28 
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "aacsbr_tablegen.h"
34 #include "fft.h"
35 #include "aacps.h"
36 #include "sbrdsp.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/libm.h"
39 #include "libavutil/avassert.h"
40 
41 #include <stdint.h>
42 #include <float.h>
43 #include <math.h>
44 
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
47 
48 #if ARCH_MIPS
49 #include "mips/aacsbr_mips.h"
50 #endif /* ARCH_MIPS */
51 
52 /**
53  * SBR VLC tables
54  */
55 enum {
66 };
67 
68 /**
69  * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70  */
71 enum {
76 };
77 
78 enum {
80 };
81 
82 static VLC vlc_sbr[10];
83 static const int8_t vlc_sbr_lav[10] =
84  { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
85 
86 #define SBR_INIT_VLC_STATIC(num, size) \
87  INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88  sbr_tmp[num].sbr_bits , 1, 1, \
89  sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
90  size)
91 
92 #define SBR_VLC_ROW(name) \
93  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
94 
96 
98 {
99  static const struct {
100  const void *sbr_codes, *sbr_bits;
101  const unsigned int table_size, elem_size;
102  } sbr_tmp[] = {
103  SBR_VLC_ROW(t_huffman_env_1_5dB),
104  SBR_VLC_ROW(f_huffman_env_1_5dB),
105  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107  SBR_VLC_ROW(t_huffman_env_3_0dB),
108  SBR_VLC_ROW(f_huffman_env_3_0dB),
109  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111  SBR_VLC_ROW(t_huffman_noise_3_0dB),
112  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
113  };
114 
115  // SBR VLC table initialization
116  SBR_INIT_VLC_STATIC(0, 1098);
117  SBR_INIT_VLC_STATIC(1, 1092);
118  SBR_INIT_VLC_STATIC(2, 768);
119  SBR_INIT_VLC_STATIC(3, 1026);
120  SBR_INIT_VLC_STATIC(4, 1058);
121  SBR_INIT_VLC_STATIC(5, 1052);
122  SBR_INIT_VLC_STATIC(6, 544);
123  SBR_INIT_VLC_STATIC(7, 544);
124  SBR_INIT_VLC_STATIC(8, 592);
125  SBR_INIT_VLC_STATIC(9, 512);
126 
128 
129  ff_ps_init();
130 }
131 
132 /** Places SBR in pure upsampling mode. */
134  sbr->start = 0;
135  // Init defults used in pure upsampling mode
136  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
137  sbr->m[1] = 0;
138  // Reset values for first SBR header
139  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
140  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
141 }
142 
144 {
145  if(sbr->mdct.mdct_bits)
146  return;
147  sbr->kx[0] = sbr->kx[1];
148  sbr_turnoff(sbr);
151  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153  * and scale back down at synthesis. */
154  ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
155  ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
156  ff_ps_ctx_init(&sbr->ps);
157  ff_sbrdsp_init(&sbr->dsp);
158  aacsbr_func_ptr_init(&sbr->c);
159 }
160 
162 {
163  ff_mdct_end(&sbr->mdct);
164  ff_mdct_end(&sbr->mdct_ana);
165 }
166 
167 static int qsort_comparison_function_int16(const void *a, const void *b)
168 {
169  return *(const int16_t *)a - *(const int16_t *)b;
170 }
171 
172 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
173 {
174  int i;
175  for (i = 0; i <= last_el; i++)
176  if (table[i] == needle)
177  return 1;
178  return 0;
179 }
180 
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
183 {
184  int k;
185  if (sbr->bs_limiter_bands > 0) {
186  static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187  1.18509277094158210129f, //2^(0.49/2)
188  1.11987160404675912501f }; //2^(0.49/3)
189  const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
190  int16_t patch_borders[7];
191  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
192 
193  patch_borders[0] = sbr->kx[1];
194  for (k = 1; k <= sbr->num_patches; k++)
195  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
196 
197  memcpy(sbr->f_tablelim, sbr->f_tablelow,
198  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
199  if (sbr->num_patches > 1)
200  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
201  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
202 
203  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
204  sizeof(sbr->f_tablelim[0]),
206 
207  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
208  while (out < sbr->f_tablelim + sbr->n_lim) {
209  if (*in >= *out * lim_bands_per_octave_warped) {
210  *++out = *in++;
211  } else if (*in == *out ||
212  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
213  in++;
214  sbr->n_lim--;
215  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
216  *out = *in++;
217  sbr->n_lim--;
218  } else {
219  *++out = *in++;
220  }
221  }
222  } else {
223  sbr->f_tablelim[0] = sbr->f_tablelow[0];
224  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
225  sbr->n_lim = 1;
226  }
227 }
228 
230 {
231  unsigned int cnt = get_bits_count(gb);
232  uint8_t bs_header_extra_1;
233  uint8_t bs_header_extra_2;
234  int old_bs_limiter_bands = sbr->bs_limiter_bands;
235  SpectrumParameters old_spectrum_params;
236 
237  sbr->start = 1;
238 
239  // Save last spectrum parameters variables to compare to new ones
240  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
241 
242  sbr->bs_amp_res_header = get_bits1(gb);
243  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
244  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
245  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
246  skip_bits(gb, 2); // bs_reserved
247 
248  bs_header_extra_1 = get_bits1(gb);
249  bs_header_extra_2 = get_bits1(gb);
250 
251  if (bs_header_extra_1) {
252  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
255  } else {
259  }
260 
261  // Check if spectrum parameters changed
262  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
263  sbr->reset = 1;
264 
265  if (bs_header_extra_2) {
266  sbr->bs_limiter_bands = get_bits(gb, 2);
267  sbr->bs_limiter_gains = get_bits(gb, 2);
268  sbr->bs_interpol_freq = get_bits1(gb);
269  sbr->bs_smoothing_mode = get_bits1(gb);
270  } else {
271  sbr->bs_limiter_bands = 2;
272  sbr->bs_limiter_gains = 2;
273  sbr->bs_interpol_freq = 1;
274  sbr->bs_smoothing_mode = 1;
275  }
276 
277  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
278  sbr_make_f_tablelim(sbr);
279 
280  return get_bits_count(gb) - cnt;
281 }
282 
283 static int array_min_int16(const int16_t *array, int nel)
284 {
285  int i, min = array[0];
286  for (i = 1; i < nel; i++)
287  min = FFMIN(array[i], min);
288  return min;
289 }
290 
291 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
292 {
293  int k, previous, present;
294  float base, prod;
295 
296  base = powf((float)stop / start, 1.0f / num_bands);
297  prod = start;
298  previous = start;
299 
300  for (k = 0; k < num_bands-1; k++) {
301  prod *= base;
302  present = lrintf(prod);
303  bands[k] = present - previous;
304  previous = present;
305  }
306  bands[num_bands-1] = stop - previous;
307 }
308 
309 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
310 {
311  // Requirements (14496-3 sp04 p205)
312  if (n_master <= 0) {
313  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
314  return -1;
315  }
316  if (bs_xover_band >= n_master) {
317  av_log(avctx, AV_LOG_ERROR,
318  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
319  bs_xover_band);
320  return -1;
321  }
322  return 0;
323 }
324 
325 /// Master Frequency Band Table (14496-3 sp04 p194)
327  SpectrumParameters *spectrum)
328 {
329  unsigned int temp, max_qmf_subbands = 0;
330  unsigned int start_min, stop_min;
331  int k;
332  const int8_t *sbr_offset_ptr;
333  int16_t stop_dk[13];
334 
335  if (sbr->sample_rate < 32000) {
336  temp = 3000;
337  } else if (sbr->sample_rate < 64000) {
338  temp = 4000;
339  } else
340  temp = 5000;
341 
342  switch (sbr->sample_rate) {
343  case 16000:
344  sbr_offset_ptr = sbr_offset[0];
345  break;
346  case 22050:
347  sbr_offset_ptr = sbr_offset[1];
348  break;
349  case 24000:
350  sbr_offset_ptr = sbr_offset[2];
351  break;
352  case 32000:
353  sbr_offset_ptr = sbr_offset[3];
354  break;
355  case 44100: case 48000: case 64000:
356  sbr_offset_ptr = sbr_offset[4];
357  break;
358  case 88200: case 96000: case 128000: case 176400: case 192000:
359  sbr_offset_ptr = sbr_offset[5];
360  break;
361  default:
363  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
364  return -1;
365  }
366 
367  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
368  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
369 
370  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
371 
372  if (spectrum->bs_stop_freq < 14) {
373  sbr->k[2] = stop_min;
374  make_bands(stop_dk, stop_min, 64, 13);
375  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
376  for (k = 0; k < spectrum->bs_stop_freq; k++)
377  sbr->k[2] += stop_dk[k];
378  } else if (spectrum->bs_stop_freq == 14) {
379  sbr->k[2] = 2*sbr->k[0];
380  } else if (spectrum->bs_stop_freq == 15) {
381  sbr->k[2] = 3*sbr->k[0];
382  } else {
384  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
385  return -1;
386  }
387  sbr->k[2] = FFMIN(64, sbr->k[2]);
388 
389  // Requirements (14496-3 sp04 p205)
390  if (sbr->sample_rate <= 32000) {
391  max_qmf_subbands = 48;
392  } else if (sbr->sample_rate == 44100) {
393  max_qmf_subbands = 35;
394  } else if (sbr->sample_rate >= 48000)
395  max_qmf_subbands = 32;
396  else
397  av_assert0(0);
398 
399  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
401  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
402  return -1;
403  }
404 
405  if (!spectrum->bs_freq_scale) {
406  int dk, k2diff;
407 
408  dk = spectrum->bs_alter_scale + 1;
409  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
411  return -1;
412 
413  for (k = 1; k <= sbr->n_master; k++)
414  sbr->f_master[k] = dk;
415 
416  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
417  if (k2diff < 0) {
418  sbr->f_master[1]--;
419  sbr->f_master[2]-= (k2diff < -1);
420  } else if (k2diff) {
421  sbr->f_master[sbr->n_master]++;
422  }
423 
424  sbr->f_master[0] = sbr->k[0];
425  for (k = 1; k <= sbr->n_master; k++)
426  sbr->f_master[k] += sbr->f_master[k - 1];
427 
428  } else {
429  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
430  int two_regions, num_bands_0;
431  int vdk0_max, vdk1_min;
432  int16_t vk0[49];
433 
434  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
435  two_regions = 1;
436  sbr->k[1] = 2 * sbr->k[0];
437  } else {
438  two_regions = 0;
439  sbr->k[1] = sbr->k[2];
440  }
441 
442  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
443 
444  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
445  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
446  return -1;
447  }
448 
449  vk0[0] = 0;
450 
451  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
452 
453  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
454  vdk0_max = vk0[num_bands_0];
455 
456  vk0[0] = sbr->k[0];
457  for (k = 1; k <= num_bands_0; k++) {
458  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
459  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
460  return -1;
461  }
462  vk0[k] += vk0[k-1];
463  }
464 
465  if (two_regions) {
466  int16_t vk1[49];
467  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
468  : 1.0f; // bs_alter_scale = {0,1}
469  int num_bands_1 = lrintf(half_bands * invwarp *
470  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
471 
472  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
473 
474  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
475 
476  if (vdk1_min < vdk0_max) {
477  int change;
478  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
479  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
480  vk1[1] += change;
481  vk1[num_bands_1] -= change;
482  }
483 
484  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
485 
486  vk1[0] = sbr->k[1];
487  for (k = 1; k <= num_bands_1; k++) {
488  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
489  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
490  return -1;
491  }
492  vk1[k] += vk1[k-1];
493  }
494 
495  sbr->n_master = num_bands_0 + num_bands_1;
497  return -1;
498  memcpy(&sbr->f_master[0], vk0,
499  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
500  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
501  num_bands_1 * sizeof(sbr->f_master[0]));
502 
503  } else {
504  sbr->n_master = num_bands_0;
506  return -1;
507  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
508  }
509  }
510 
511  return 0;
512 }
513 
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
516 {
517  int i, k, last_k = -1, last_msb = -1, sb = 0;
518  int msb = sbr->k[0];
519  int usb = sbr->kx[1];
520  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
521 
522  sbr->num_patches = 0;
523 
524  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
525  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
526  } else
527  k = sbr->n_master;
528 
529  do {
530  int odd = 0;
531  if (k == last_k && msb == last_msb) {
532  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
533  return AVERROR_INVALIDDATA;
534  }
535  last_k = k;
536  last_msb = msb;
537  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
538  sb = sbr->f_master[i];
539  odd = (sb + sbr->k[0]) & 1;
540  }
541 
542  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
543  // After this check the final number of patches can still be six which is
544  // illegal however the Coding Technologies decoder check stream has a final
545  // count of 6 patches
546  if (sbr->num_patches > 5) {
547  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
548  return -1;
549  }
550 
551  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
552  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
553 
554  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
555  usb = sb;
556  msb = sb;
557  sbr->num_patches++;
558  } else
559  msb = sbr->kx[1];
560 
561  if (sbr->f_master[k] - sb < 3)
562  k = sbr->n_master;
563  } while (sb != sbr->kx[1] + sbr->m[1]);
564 
565  if (sbr->num_patches > 1 &&
566  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
567  sbr->num_patches--;
568 
569  return 0;
570 }
571 
572 /// Derived Frequency Band Tables (14496-3 sp04 p197)
574 {
575  int k, temp;
576 
577  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
578  sbr->n[0] = (sbr->n[1] + 1) >> 1;
579 
580  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
581  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
582  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
583  sbr->kx[1] = sbr->f_tablehigh[0];
584 
585  // Requirements (14496-3 sp04 p205)
586  if (sbr->kx[1] + sbr->m[1] > 64) {
588  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
589  return -1;
590  }
591  if (sbr->kx[1] > 32) {
592  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
593  return -1;
594  }
595 
596  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
597  temp = sbr->n[1] & 1;
598  for (k = 1; k <= sbr->n[0]; k++)
599  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
600 
602  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
603  if (sbr->n_q > 5) {
604  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
605  return -1;
606  }
607 
608  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
609  temp = 0;
610  for (k = 1; k <= sbr->n_q; k++) {
611  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
612  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
613  }
614 
615  if (sbr_hf_calc_npatches(ac, sbr) < 0)
616  return -1;
617 
618  sbr_make_f_tablelim(sbr);
619 
620  sbr->data[0].f_indexnoise = 0;
621  sbr->data[1].f_indexnoise = 0;
622 
623  return 0;
624 }
625 
627  int elements)
628 {
629  int i;
630  for (i = 0; i < elements; i++) {
631  vec[i] = get_bits1(gb);
632  }
633 }
634 
635 /** ceil(log2(index+1)) */
636 static const int8_t ceil_log2[] = {
637  0, 1, 2, 2, 3, 3,
638 };
639 
641  GetBitContext *gb, SBRData *ch_data)
642 {
643  int i;
644  unsigned bs_pointer = 0;
645  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
646  int abs_bord_trail = 16;
647  int num_rel_lead, num_rel_trail;
648  unsigned bs_num_env_old = ch_data->bs_num_env;
649 
650  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
651  ch_data->bs_amp_res = sbr->bs_amp_res_header;
652  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
653 
654  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
655  case FIXFIX:
656  ch_data->bs_num_env = 1 << get_bits(gb, 2);
657  num_rel_lead = ch_data->bs_num_env - 1;
658  if (ch_data->bs_num_env == 1)
659  ch_data->bs_amp_res = 0;
660 
661  if (ch_data->bs_num_env > 4) {
663  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
664  ch_data->bs_num_env);
665  return -1;
666  }
667 
668  ch_data->t_env[0] = 0;
669  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
670 
671  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
672  ch_data->bs_num_env;
673  for (i = 0; i < num_rel_lead; i++)
674  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
675 
676  ch_data->bs_freq_res[1] = get_bits1(gb);
677  for (i = 1; i < ch_data->bs_num_env; i++)
678  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
679  break;
680  case FIXVAR:
681  abs_bord_trail += get_bits(gb, 2);
682  num_rel_trail = get_bits(gb, 2);
683  ch_data->bs_num_env = num_rel_trail + 1;
684  ch_data->t_env[0] = 0;
685  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
686 
687  for (i = 0; i < num_rel_trail; i++)
688  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
689  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
690 
691  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
692 
693  for (i = 0; i < ch_data->bs_num_env; i++)
694  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
695  break;
696  case VARFIX:
697  ch_data->t_env[0] = get_bits(gb, 2);
698  num_rel_lead = get_bits(gb, 2);
699  ch_data->bs_num_env = num_rel_lead + 1;
700  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
701 
702  for (i = 0; i < num_rel_lead; i++)
703  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
704 
705  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
706 
707  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
708  break;
709  case VARVAR:
710  ch_data->t_env[0] = get_bits(gb, 2);
711  abs_bord_trail += get_bits(gb, 2);
712  num_rel_lead = get_bits(gb, 2);
713  num_rel_trail = get_bits(gb, 2);
714  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
715 
716  if (ch_data->bs_num_env > 5) {
718  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
719  ch_data->bs_num_env);
720  return -1;
721  }
722 
723  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
724 
725  for (i = 0; i < num_rel_lead; i++)
726  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
727  for (i = 0; i < num_rel_trail; i++)
728  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
729  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
730 
731  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
732 
733  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
734  break;
735  }
736 
737  if (bs_pointer > ch_data->bs_num_env + 1) {
739  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
740  bs_pointer);
741  return -1;
742  }
743 
744  for (i = 1; i <= ch_data->bs_num_env; i++) {
745  if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
746  av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
747  return -1;
748  }
749  }
750 
751  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
752 
753  ch_data->t_q[0] = ch_data->t_env[0];
754  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
755  if (ch_data->bs_num_noise > 1) {
756  unsigned int idx;
757  if (ch_data->bs_frame_class == FIXFIX) {
758  idx = ch_data->bs_num_env >> 1;
759  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
760  idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
761  } else { // VARFIX
762  if (!bs_pointer)
763  idx = 1;
764  else if (bs_pointer == 1)
765  idx = ch_data->bs_num_env - 1;
766  else // bs_pointer > 1
767  idx = bs_pointer - 1;
768  }
769  ch_data->t_q[1] = ch_data->t_env[idx];
770  }
771 
772  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
773  ch_data->e_a[1] = -1;
774  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
775  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
776  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
777  ch_data->e_a[1] = bs_pointer - 1;
778 
779  return 0;
780 }
781 
782 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
783  //These variables are saved from the previous frame rather than copied
784  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
785  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
786  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
787 
788  //These variables are read from the bitstream and therefore copied
789  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
790  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
791  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
792  dst->bs_num_env = src->bs_num_env;
793  dst->bs_amp_res = src->bs_amp_res;
794  dst->bs_num_noise = src->bs_num_noise;
795  dst->bs_frame_class = src->bs_frame_class;
796  dst->e_a[1] = src->e_a[1];
797 }
798 
799 /// Read how the envelope and noise floor data is delta coded
801  SBRData *ch_data)
802 {
803  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
804  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
805 }
806 
807 /// Read inverse filtering data
809  SBRData *ch_data)
810 {
811  int i;
812 
813  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
814  for (i = 0; i < sbr->n_q; i++)
815  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
816 }
817 
819  SBRData *ch_data, int ch)
820 {
821  int bits;
822  int i, j, k;
823  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
824  int t_lav, f_lav;
825  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
826  const int odd = sbr->n[1] & 1;
827 
828  if (sbr->bs_coupling && ch) {
829  if (ch_data->bs_amp_res) {
830  bits = 5;
831  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
833  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
835  } else {
836  bits = 6;
837  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
839  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
841  }
842  } else {
843  if (ch_data->bs_amp_res) {
844  bits = 6;
845  t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
847  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
849  } else {
850  bits = 7;
851  t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
853  f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
855  }
856  }
857 
858  for (i = 0; i < ch_data->bs_num_env; i++) {
859  if (ch_data->bs_df_env[i]) {
860  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
861  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
862  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
863  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
864  } else if (ch_data->bs_freq_res[i + 1]) {
865  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
866  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
867  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
868  }
869  } else {
870  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
872  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873  }
874  }
875  } else {
876  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
877  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
878  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
879  }
880  }
881 
882  //assign 0th elements of env_facs from last elements
883  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
884  sizeof(ch_data->env_facs[0]));
885 }
886 
888  SBRData *ch_data, int ch)
889 {
890  int i, j;
891  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
892  int t_lav, f_lav;
893  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
894 
895  if (sbr->bs_coupling && ch) {
896  t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
898  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
900  } else {
901  t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
903  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
905  }
906 
907  for (i = 0; i < ch_data->bs_num_noise; i++) {
908  if (ch_data->bs_df_noise[i]) {
909  for (j = 0; j < sbr->n_q; j++)
910  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
911  } else {
912  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
913  for (j = 1; j < sbr->n_q; j++)
914  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
915  }
916  }
917 
918  //assign 0th elements of noise_facs from last elements
919  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
920  sizeof(ch_data->noise_facs[0]));
921 }
922 
924  GetBitContext *gb,
925  int bs_extension_id, int *num_bits_left)
926 {
927  switch (bs_extension_id) {
928  case EXTENSION_ID_PS:
929  if (!ac->oc[1].m4ac.ps) {
930  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
931  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
932  *num_bits_left = 0;
933  } else {
934 #if 1
935  *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
937 #else
938  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
939  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
940  *num_bits_left = 0;
941 #endif
942  }
943  break;
944  default:
945  // some files contain 0-padding
946  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
947  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
948  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
949  *num_bits_left = 0;
950  break;
951  }
952 }
953 
956  GetBitContext *gb)
957 {
958  if (get_bits1(gb)) // bs_data_extra
959  skip_bits(gb, 4); // bs_reserved
960 
961  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
962  return -1;
963  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
964  read_sbr_invf(sbr, gb, &sbr->data[0]);
965  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
966  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
967 
968  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
969  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
970 
971  return 0;
972 }
973 
976  GetBitContext *gb)
977 {
978  if (get_bits1(gb)) // bs_data_extra
979  skip_bits(gb, 8); // bs_reserved
980 
981  if ((sbr->bs_coupling = get_bits1(gb))) {
982  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
983  return -1;
984  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
985  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
986  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
987  read_sbr_invf(sbr, gb, &sbr->data[0]);
988  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
989  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
990  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
991  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
992  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
993  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
994  } else {
995  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
996  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
997  return -1;
998  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
999  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1000  read_sbr_invf(sbr, gb, &sbr->data[0]);
1001  read_sbr_invf(sbr, gb, &sbr->data[1]);
1002  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1003  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1004  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1005  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1006  }
1007 
1008  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1009  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1010  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1011  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1012 
1013  return 0;
1014 }
1015 
1016 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1017  GetBitContext *gb, int id_aac)
1018 {
1019  unsigned int cnt = get_bits_count(gb);
1020 
1021  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1022  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1023  sbr_turnoff(sbr);
1024  return get_bits_count(gb) - cnt;
1025  }
1026  } else if (id_aac == TYPE_CPE) {
1027  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1028  sbr_turnoff(sbr);
1029  return get_bits_count(gb) - cnt;
1030  }
1031  } else {
1032  av_log(ac->avctx, AV_LOG_ERROR,
1033  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1034  sbr_turnoff(sbr);
1035  return get_bits_count(gb) - cnt;
1036  }
1037  if (get_bits1(gb)) { // bs_extended_data
1038  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1039  if (num_bits_left == 15)
1040  num_bits_left += get_bits(gb, 8); // bs_esc_count
1041 
1042  num_bits_left <<= 3;
1043  while (num_bits_left > 7) {
1044  num_bits_left -= 2;
1045  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1046  }
1047  if (num_bits_left < 0) {
1048  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1049  }
1050  if (num_bits_left > 0)
1051  skip_bits(gb, num_bits_left);
1052  }
1053 
1054  return get_bits_count(gb) - cnt;
1055 }
1056 
1058 {
1059  int err;
1060  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1061  if (err >= 0)
1062  err = sbr_make_f_derived(ac, sbr);
1063  if (err < 0) {
1064  av_log(ac->avctx, AV_LOG_ERROR,
1065  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1066  sbr_turnoff(sbr);
1067  }
1068 }
1069 
1070 /**
1071  * Decode Spectral Band Replication extension data; reference: table 4.55.
1072  *
1073  * @param crc flag indicating the presence of CRC checksum
1074  * @param cnt length of TYPE_FIL syntactic element in bytes
1075  *
1076  * @return Returns number of bytes consumed from the TYPE_FIL element.
1077  */
1079  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1080 {
1081  unsigned int num_sbr_bits = 0, num_align_bits;
1082  unsigned bytes_read;
1083  GetBitContext gbc = *gb_host, *gb = &gbc;
1084  skip_bits_long(gb_host, cnt*8 - 4);
1085 
1086  sbr->reset = 0;
1087 
1088  if (!sbr->sample_rate)
1089  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1090  if (!ac->oc[1].m4ac.ext_sample_rate)
1091  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1092 
1093  if (crc) {
1094  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1095  num_sbr_bits += 10;
1096  }
1097 
1098  //Save some state from the previous frame.
1099  sbr->kx[0] = sbr->kx[1];
1100  sbr->m[0] = sbr->m[1];
1101  sbr->kx_and_m_pushed = 1;
1102 
1103  num_sbr_bits++;
1104  if (get_bits1(gb)) // bs_header_flag
1105  num_sbr_bits += read_sbr_header(sbr, gb);
1106 
1107  if (sbr->reset)
1108  sbr_reset(ac, sbr);
1109 
1110  if (sbr->start)
1111  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1112 
1113  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1114  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1115 
1116  if (bytes_read > cnt) {
1117  av_log(ac->avctx, AV_LOG_ERROR,
1118  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1119  }
1120  return cnt;
1121 }
1122 
1123 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1124 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1125 {
1126  int k, e;
1127  int ch;
1128 
1129  if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1130  float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1131  float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1132  for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1133  for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1134  float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1135  float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1136  float fac;
1137  if (temp1 > 1E20) {
1138  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1139  temp1 = 1;
1140  }
1141  fac = temp1 / (1.0f + temp2);
1142  sbr->data[0].env_facs[e][k] = fac;
1143  sbr->data[1].env_facs[e][k] = fac * temp2;
1144  }
1145  }
1146  for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1147  for (k = 0; k < sbr->n_q; k++) {
1148  float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1149  float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1150  float fac;
1151  if (temp1 > 1E20) {
1152  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1153  temp1 = 1;
1154  }
1155  fac = temp1 / (1.0f + temp2);
1156  sbr->data[0].noise_facs[e][k] = fac;
1157  sbr->data[1].noise_facs[e][k] = fac * temp2;
1158  }
1159  }
1160  } else { // SCE or one non-coupled CPE
1161  for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1162  float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1163  for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1164  for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1165  sbr->data[ch].env_facs[e][k] =
1166  exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1167  if (sbr->data[ch].env_facs[e][k] > 1E20) {
1168  av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1169  sbr->data[ch].env_facs[e][k] = 1;
1170  }
1171  }
1172 
1173  for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1174  for (k = 0; k < sbr->n_q; k++)
1175  sbr->data[ch].noise_facs[e][k] =
1176  exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1177  }
1178  }
1179 }
1180 
1181 /**
1182  * Analysis QMF Bank (14496-3 sp04 p206)
1183  *
1184  * @param x pointer to the beginning of the first sample window
1185  * @param W array of complex-valued samples split into subbands
1186  */
1187 #ifndef sbr_qmf_analysis
1189  SBRDSPContext *sbrdsp, const float *in, float *x,
1190  float z[320], float W[2][32][32][2], int buf_idx)
1191 {
1192  int i;
1193  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1194  memcpy(x+288, in, 1024*sizeof(x[0]));
1195  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1196  // are not supported
1197  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1198  sbrdsp->sum64x5(z);
1199  sbrdsp->qmf_pre_shuffle(z);
1200  mdct->imdct_half(mdct, z, z+64);
1201  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1202  x += 32;
1203  }
1204 }
1205 #endif
1206 
1207 /**
1208  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1209  * (14496-3 sp04 p206)
1210  */
1211 #ifndef sbr_qmf_synthesis
1212 static void sbr_qmf_synthesis(FFTContext *mdct,
1213  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1214  float *out, float X[2][38][64],
1215  float mdct_buf[2][64],
1216  float *v0, int *v_off, const unsigned int div)
1217 {
1218  int i, n;
1219  const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1220  const int step = 128 >> div;
1221  float *v;
1222  for (i = 0; i < 32; i++) {
1223  if (*v_off < step) {
1224  int saved_samples = (1280 - 128) >> div;
1225  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1226  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1227  } else {
1228  *v_off -= step;
1229  }
1230  v = v0 + *v_off;
1231  if (div) {
1232  for (n = 0; n < 32; n++) {
1233  X[0][i][ n] = -X[0][i][n];
1234  X[0][i][32+n] = X[1][i][31-n];
1235  }
1236  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1237  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1238  } else {
1239  sbrdsp->neg_odd_64(X[1][i]);
1240  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1241  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1242  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1243  }
1244  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1245  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1246  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1247  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1248  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1249  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1250  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1251  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1252  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1253  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1254  out += 64 >> div;
1255  }
1256 }
1257 #endif
1258 
1259 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1260  * (14496-3 sp04 p214)
1261  * Warning: This routine does not seem numerically stable.
1262  */
1264  float (*alpha0)[2], float (*alpha1)[2],
1265  const float X_low[32][40][2], int k0)
1266 {
1267  int k;
1268  for (k = 0; k < k0; k++) {
1269  LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1270  float dk;
1271 
1272  dsp->autocorrelate(X_low[k], phi);
1273 
1274  dk = phi[2][1][0] * phi[1][0][0] -
1275  (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1276 
1277  if (!dk) {
1278  alpha1[k][0] = 0;
1279  alpha1[k][1] = 0;
1280  } else {
1281  float temp_real, temp_im;
1282  temp_real = phi[0][0][0] * phi[1][1][0] -
1283  phi[0][0][1] * phi[1][1][1] -
1284  phi[0][1][0] * phi[1][0][0];
1285  temp_im = phi[0][0][0] * phi[1][1][1] +
1286  phi[0][0][1] * phi[1][1][0] -
1287  phi[0][1][1] * phi[1][0][0];
1288 
1289  alpha1[k][0] = temp_real / dk;
1290  alpha1[k][1] = temp_im / dk;
1291  }
1292 
1293  if (!phi[1][0][0]) {
1294  alpha0[k][0] = 0;
1295  alpha0[k][1] = 0;
1296  } else {
1297  float temp_real, temp_im;
1298  temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1299  alpha1[k][1] * phi[1][1][1];
1300  temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1301  alpha1[k][0] * phi[1][1][1];
1302 
1303  alpha0[k][0] = -temp_real / phi[1][0][0];
1304  alpha0[k][1] = -temp_im / phi[1][0][0];
1305  }
1306 
1307  if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1308  alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1309  alpha1[k][0] = 0;
1310  alpha1[k][1] = 0;
1311  alpha0[k][0] = 0;
1312  alpha0[k][1] = 0;
1313  }
1314  }
1315 }
1316 
1317 /// Chirp Factors (14496-3 sp04 p214)
1318 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1319 {
1320  int i;
1321  float new_bw;
1322  static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1323 
1324  for (i = 0; i < sbr->n_q; i++) {
1325  if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1326  new_bw = 0.6f;
1327  } else
1328  new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1329 
1330  if (new_bw < ch_data->bw_array[i]) {
1331  new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1332  } else
1333  new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1334  ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1335  }
1336 }
1337 
1338 /// Generate the subband filtered lowband
1340  float X_low[32][40][2], const float W[2][32][32][2],
1341  int buf_idx)
1342 {
1343  int i, k;
1344  const int t_HFGen = 8;
1345  const int i_f = 32;
1346  memset(X_low, 0, 32*sizeof(*X_low));
1347  for (k = 0; k < sbr->kx[1]; k++) {
1348  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1349  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1350  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1351  }
1352  }
1353  buf_idx = 1-buf_idx;
1354  for (k = 0; k < sbr->kx[0]; k++) {
1355  for (i = 0; i < t_HFGen; i++) {
1356  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1357  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1358  }
1359  }
1360  return 0;
1361 }
1362 
1363 /// High Frequency Generator (14496-3 sp04 p215)
1365  float X_high[64][40][2], const float X_low[32][40][2],
1366  const float (*alpha0)[2], const float (*alpha1)[2],
1367  const float bw_array[5], const uint8_t *t_env,
1368  int bs_num_env)
1369 {
1370  int j, x;
1371  int g = 0;
1372  int k = sbr->kx[1];
1373  for (j = 0; j < sbr->num_patches; j++) {
1374  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1375  const int p = sbr->patch_start_subband[j] + x;
1376  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1377  g++;
1378  g--;
1379 
1380  if (g < 0) {
1381  av_log(ac->avctx, AV_LOG_ERROR,
1382  "ERROR : no subband found for frequency %d\n", k);
1383  return -1;
1384  }
1385 
1386  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1387  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1388  alpha0[p], alpha1[p], bw_array[g],
1389  2 * t_env[0], 2 * t_env[bs_num_env]);
1390  }
1391  }
1392  if (k < sbr->m[1] + sbr->kx[1])
1393  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1394 
1395  return 0;
1396 }
1397 
1398 /// Generate the subband filtered lowband
1399 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1400  const float Y0[38][64][2], const float Y1[38][64][2],
1401  const float X_low[32][40][2], int ch)
1402 {
1403  int k, i;
1404  const int i_f = 32;
1405  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1406  memset(X, 0, 2*sizeof(*X));
1407  for (k = 0; k < sbr->kx[0]; k++) {
1408  for (i = 0; i < i_Temp; i++) {
1409  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1410  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1411  }
1412  }
1413  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1414  for (i = 0; i < i_Temp; i++) {
1415  X[0][i][k] = Y0[i + i_f][k][0];
1416  X[1][i][k] = Y0[i + i_f][k][1];
1417  }
1418  }
1419 
1420  for (k = 0; k < sbr->kx[1]; k++) {
1421  for (i = i_Temp; i < 38; i++) {
1422  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1423  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1424  }
1425  }
1426  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1427  for (i = i_Temp; i < i_f; i++) {
1428  X[0][i][k] = Y1[i][k][0];
1429  X[1][i][k] = Y1[i][k][1];
1430  }
1431  }
1432  return 0;
1433 }
1434 
1435 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1436  * (14496-3 sp04 p217)
1437  */
1439  SBRData *ch_data, int e_a[2])
1440 {
1441  int e, i, m;
1442 
1443  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1444  for (e = 0; e < ch_data->bs_num_env; e++) {
1445  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1446  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1447  int k;
1448 
1449  if (sbr->kx[1] != table[0]) {
1450  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1451  "Derived frequency tables were not regenerated.\n");
1452  sbr_turnoff(sbr);
1453  return AVERROR_BUG;
1454  }
1455  for (i = 0; i < ilim; i++)
1456  for (m = table[i]; m < table[i + 1]; m++)
1457  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1458 
1459  // ch_data->bs_num_noise > 1 => 2 noise floors
1460  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1461  for (i = 0; i < sbr->n_q; i++)
1462  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1463  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1464 
1465  for (i = 0; i < sbr->n[1]; i++) {
1466  if (ch_data->bs_add_harmonic_flag) {
1467  const unsigned int m_midpoint =
1468  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1469 
1470  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1471  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1472  }
1473  }
1474 
1475  for (i = 0; i < ilim; i++) {
1476  int additional_sinusoid_present = 0;
1477  for (m = table[i]; m < table[i + 1]; m++) {
1478  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1479  additional_sinusoid_present = 1;
1480  break;
1481  }
1482  }
1483  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1484  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1485  }
1486  }
1487 
1488  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1489  return 0;
1490 }
1491 
1492 /// Estimation of current envelope (14496-3 sp04 p218)
1493 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1494  SpectralBandReplication *sbr, SBRData *ch_data)
1495 {
1496  int e, m;
1497  int kx1 = sbr->kx[1];
1498 
1499  if (sbr->bs_interpol_freq) {
1500  for (e = 0; e < ch_data->bs_num_env; e++) {
1501  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1502  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1503  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1504 
1505  for (m = 0; m < sbr->m[1]; m++) {
1506  float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1507  e_curr[e][m] = sum * recip_env_size;
1508  }
1509  }
1510  } else {
1511  int k, p;
1512 
1513  for (e = 0; e < ch_data->bs_num_env; e++) {
1514  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1515  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1516  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1517  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1518 
1519  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1520  float sum = 0.0f;
1521  const int den = env_size * (table[p + 1] - table[p]);
1522 
1523  for (k = table[p]; k < table[p + 1]; k++) {
1524  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1525  }
1526  sum /= den;
1527  for (k = table[p]; k < table[p + 1]; k++) {
1528  e_curr[e][k - kx1] = sum;
1529  }
1530  }
1531  }
1532  }
1533 }
1534 
1535 /**
1536  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1537  * and Calculation of gain (14496-3 sp04 p219)
1538  */
1540  SBRData *ch_data, const int e_a[2])
1541 {
1542  int e, k, m;
1543  // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1544  static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1545 
1546  for (e = 0; e < ch_data->bs_num_env; e++) {
1547  int delta = !((e == e_a[1]) || (e == e_a[0]));
1548  for (k = 0; k < sbr->n_lim; k++) {
1549  float gain_boost, gain_max;
1550  float sum[2] = { 0.0f, 0.0f };
1551  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1552  const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1553  sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1554  sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1555  if (!sbr->s_mapped[e][m]) {
1556  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1557  ((1.0f + sbr->e_curr[e][m]) *
1558  (1.0f + sbr->q_mapped[e][m] * delta)));
1559  } else {
1560  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1561  ((1.0f + sbr->e_curr[e][m]) *
1562  (1.0f + sbr->q_mapped[e][m])));
1563  }
1564  }
1565  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1566  sum[0] += sbr->e_origmapped[e][m];
1567  sum[1] += sbr->e_curr[e][m];
1568  }
1569  gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1570  gain_max = FFMIN(100000.f, gain_max);
1571  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1572  float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1573  sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1574  sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1575  }
1576  sum[0] = sum[1] = 0.0f;
1577  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1578  sum[0] += sbr->e_origmapped[e][m];
1579  sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1580  + sbr->s_m[e][m] * sbr->s_m[e][m]
1581  + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1582  }
1583  gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1584  gain_boost = FFMIN(1.584893192f, gain_boost);
1585  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1586  sbr->gain[e][m] *= gain_boost;
1587  sbr->q_m[e][m] *= gain_boost;
1588  sbr->s_m[e][m] *= gain_boost;
1589  }
1590  }
1591  }
1592 }
1593 
1594 /// Assembling HF Signals (14496-3 sp04 p220)
1595 static void sbr_hf_assemble(float Y1[38][64][2],
1596  const float X_high[64][40][2],
1597  SpectralBandReplication *sbr, SBRData *ch_data,
1598  const int e_a[2])
1599 {
1600  int e, i, j, m;
1601  const int h_SL = 4 * !sbr->bs_smoothing_mode;
1602  const int kx = sbr->kx[1];
1603  const int m_max = sbr->m[1];
1604  static const float h_smooth[5] = {
1605  0.33333333333333,
1606  0.30150283239582,
1607  0.21816949906249,
1608  0.11516383427084,
1609  0.03183050093751,
1610  };
1611  float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1612  int indexnoise = ch_data->f_indexnoise;
1613  int indexsine = ch_data->f_indexsine;
1614 
1615  if (sbr->reset) {
1616  for (i = 0; i < h_SL; i++) {
1617  memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1618  memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1619  }
1620  } else if (h_SL) {
1621  for (i = 0; i < 4; i++) {
1622  memcpy(g_temp[i + 2 * ch_data->t_env[0]],
1623  g_temp[i + 2 * ch_data->t_env_num_env_old],
1624  sizeof(g_temp[0]));
1625  memcpy(q_temp[i + 2 * ch_data->t_env[0]],
1626  q_temp[i + 2 * ch_data->t_env_num_env_old],
1627  sizeof(q_temp[0]));
1628  }
1629  }
1630 
1631  for (e = 0; e < ch_data->bs_num_env; e++) {
1632  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1633  memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1634  memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1635  }
1636  }
1637 
1638  for (e = 0; e < ch_data->bs_num_env; e++) {
1639  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1640  LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1641  LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1642  float *g_filt, *q_filt;
1643 
1644  if (h_SL && e != e_a[0] && e != e_a[1]) {
1645  g_filt = g_filt_tab;
1646  q_filt = q_filt_tab;
1647  for (m = 0; m < m_max; m++) {
1648  const int idx1 = i + h_SL;
1649  g_filt[m] = 0.0f;
1650  q_filt[m] = 0.0f;
1651  for (j = 0; j <= h_SL; j++) {
1652  g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1653  q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1654  }
1655  }
1656  } else {
1657  g_filt = g_temp[i + h_SL];
1658  q_filt = q_temp[i];
1659  }
1660 
1661  sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1663 
1664  if (e != e_a[0] && e != e_a[1]) {
1665  sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1666  q_filt, indexnoise,
1667  kx, m_max);
1668  } else {
1669  int idx = indexsine&1;
1670  int A = (1-((indexsine+(kx & 1))&2));
1671  int B = (A^(-idx)) + idx;
1672  float *out = &Y1[i][kx][idx];
1673  float *in = sbr->s_m[e];
1674  for (m = 0; m+1 < m_max; m+=2) {
1675  out[2*m ] += in[m ] * A;
1676  out[2*m+2] += in[m+1] * B;
1677  }
1678  if(m_max&1)
1679  out[2*m ] += in[m ] * A;
1680  }
1681  indexnoise = (indexnoise + m_max) & 0x1ff;
1682  indexsine = (indexsine + 1) & 3;
1683  }
1684  }
1685  ch_data->f_indexnoise = indexnoise;
1686  ch_data->f_indexsine = indexsine;
1687 }
1688 
1690  float* L, float* R)
1691 {
1692  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1693  int ch;
1694  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1695  int err;
1696 
1697  if (!sbr->kx_and_m_pushed) {
1698  sbr->kx[0] = sbr->kx[1];
1699  sbr->m[0] = sbr->m[1];
1700  } else {
1701  sbr->kx_and_m_pushed = 0;
1702  }
1703 
1704  if (sbr->start) {
1705  sbr_dequant(sbr, id_aac);
1706  }
1707  for (ch = 0; ch < nch; ch++) {
1708  /* decode channel */
1709  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1710  (float*)sbr->qmf_filter_scratch,
1711  sbr->data[ch].W, sbr->data[ch].Ypos);
1712  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1713  (const float (*)[32][32][2]) sbr->data[ch].W,
1714  sbr->data[ch].Ypos);
1715  sbr->data[ch].Ypos ^= 1;
1716  if (sbr->start) {
1717  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1718  (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1719  sbr_chirp(sbr, &sbr->data[ch]);
1720  sbr_hf_gen(ac, sbr, sbr->X_high,
1721  (const float (*)[40][2]) sbr->X_low,
1722  (const float (*)[2]) sbr->alpha0,
1723  (const float (*)[2]) sbr->alpha1,
1724  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1725  sbr->data[ch].bs_num_env);
1726 
1727  // hf_adj
1728  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1729  if (!err) {
1730  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1731  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1732  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1733  (const float (*)[40][2]) sbr->X_high,
1734  sbr, &sbr->data[ch],
1735  sbr->data[ch].e_a);
1736  }
1737  }
1738 
1739  /* synthesis */
1740  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1741  (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1742  (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1743  (const float (*)[40][2]) sbr->X_low, ch);
1744  }
1745 
1746  if (ac->oc[1].m4ac.ps == 1) {
1747  if (sbr->ps.start) {
1748  ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1749  } else {
1750  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1751  }
1752  nch = 2;
1753  }
1754 
1755  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1756  L, sbr->X[0], sbr->qmf_filter_scratch,
1759  downsampled);
1760  if (nch == 2)
1761  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1762  R, sbr->X[1], sbr->qmf_filter_scratch,
1765  downsampled);
1766 }
1767 
1769 {
1770  c->sbr_lf_gen = sbr_lf_gen;
1772  c->sbr_x_gen = sbr_x_gen;
1774 
1775  if(ARCH_MIPS)
1777 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
AVFloatDSPContext * fdsp
Definition: aac.h:299
#define NULL
Definition: coverity.c:32
float alpha1[64][2]
First coefficient used to filter the subband signals.
Definition: sbr.h:192
float v
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
float e_curr[7][48]
Estimated envelope.
Definition: sbr.h:200
static float sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
Definition: aacsbr.c:573
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
Definition: aacps.c:909
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:1595
unsigned bs_smoothing_mode
Definition: sbr.h:150
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
Definition: aacsbr.c:887
AVCodecContext * avctx
Definition: aac.h:266
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
else temp
Definition: vf_mcdeint.c:257
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:217
const char * g
Definition: vf_curves.c:108
float Y[2][38][64][2]
Definition: sbr.h:94
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
Definition: aacsbr.c:782
void(* sum64x5)(float *z)
Definition: sbrdsp.h:27
float X[2][2][38][64]
QMF values of the reconstructed signal.
Definition: sbr.h:188
float(* sum_square)(float(*x)[2], int n)
Definition: sbrdsp.h:28
Definition: aac.h:49
Definition: aac.h:50
void(* qmf_deint_neg)(float *v, const float *src)
Definition: sbrdsp.h:32
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
static void aacsbr_func_ptr_init(AACSBRContext *c)
Definition: aacsbr.c:1768
av_cold void ff_aac_sbr_init(void)
Initialize SBR.
Definition: aacsbr.c:97
const char * b
Definition: vf_curves.c:109
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
unsigned kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:156
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, float *out, float X[2][38][64], float mdct_buf[2][64], float *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
Definition: aacsbr.c:1212
float q_m[7][48]
Amplitude adjusted noise scalefactors.
Definition: sbr.h:202
float q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:196
unsigned n_lim
Number of limiter bands.
Definition: sbr.h:169
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_high[64][40][2], const float X_low[32][40][2], const float(*alpha0)[2], const float(*alpha1)[2], const float bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aacsbr.c:1364
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Definition: aacsbr.c:640
#define VLC_TYPE
Definition: get_bits.h:61
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
GLfloat v0
Definition: opengl_enc.c:107
float e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:194
FFTContext mdct
Definition: sbr.h:208
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:2833
SpectrumParameters spectrum_params
Definition: sbr.h:141
Definition: aac.h:51
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
Definition: aacsbr.c:161
float bw_array[5]
Chirp factors.
Definition: sbr.h:89
float qmf_filter_scratch[5][64]
Definition: sbr.h:206
unsigned kx_and_m_pushed
Definition: sbr.h:159
unsigned n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:165
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:260
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
if()
Definition: avfilter.c:975
uint8_t bits
Definition: crc.c:295
uint8_t
#define av_cold
Definition: attributes.h:74
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
Definition: aacsbr.c:309
float delta
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:175
Definition: aacsbr.c:75
static av_cold void aacsbr_tableinit(void)
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:609
static int qsort_comparison_function_int16(const void *a, const void *b)
Definition: aacsbr.c:167
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
Definition: aacsbr.c:1078
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.c:86
float env_facs[6][48]
Envelope scalefactors.
Definition: sbr.h:99
AAC Spectral Band Replication decoding data.
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.c:45
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
void(* qmf_deint_bfly)(float *v, const float *src0, const float *src1)
Definition: sbrdsp.h:33
#define lrintf(x)
Definition: libm_mips.h:70
Definition: vf_geq.c:45
SBRData data[2]
Definition: sbr.h:162
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:229
uint8_t bs_df_noise[2]
Definition: sbr.h:73
static void sbr_env_estimate(float(*e_curr)[48], float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
Definition: aacsbr.c:1493
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
Definition: aacsbr.c:1438
#define A(x)
Definition: vp56_arith.h:28
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
Definition: aacsbr.c:626
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
Definition: aacsbr.c:326
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:181
unsigned m
Definition: audioconvert.c:187
static int array_min_int16(const int16_t *array, int nel)
Definition: aacsbr.c:283
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:177
float gain[7][48]
Definition: sbr.h:205
MPEG4AudioConfig m4ac
Definition: aac.h:116
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:107
static double alpha(void *priv, double x, double y)
Definition: vf_geq.c:98
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:175
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:173
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:1263
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:2842
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:974
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:1124
unsigned num_patches
Definition: sbr.h:180
av_cold void ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:971
static const struct endianess table[]
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], const float Y0[38][64][2], const float Y1[38][64][2], const float X_low[32][40][2], int ch)
Generate the subband filtered lowband.
Definition: aacsbr.c:1399
float alpha0[64][2]
Zeroth coefficient used to filter the subband signals.
Definition: sbr.h:190
#define NOISE_FLOOR_OFFSET
Definition: aacsbr.c:46
Spectral Band Replication definitions and structures.
simple assert() macros that are a bit more flexible than ISO C assert().
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
Definition: aacsbr.c:515
void(* hf_apply_noise[4])(float(*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max)
Definition: sbrdsp.h:40
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, float *L, float *R)
Apply one SBR element to one AAC element.
Definition: aacsbr.c:1689
#define ff_mdct_init
Definition: fft.h:167
void(* sbr_hf_assemble)(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:122
#define FFMAX(a, b)
Definition: common.h:64
int(* sbr_x_gen)(SpectralBandReplication *sbr, float X[2][38][64], const float Y0[38][64][2], const float Y1[38][64][2], const float X_low[32][40][2], int ch)
Definition: sbr.h:126
unsigned n_master
The number of frequency bands in f_master.
Definition: sbr.h:161
float q_temp[42][48]
Definition: sbr.h:96
unsigned bs_interpol_freq
Definition: sbr.h:149
Reference: libavcodec/aacsbr.c.
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
Definition: aacsbr.c:800
FFTContext mdct_ana
Definition: sbr.h:207
Definition: get_bits.h:63
#define powf(x, y)
Definition: libm.h:48
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const float *in, float *x, float z[320], float W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
Definition: aacsbr.c:1188
float synthesis_filterbank_samples[SBR_SYNTHESIS_BUF_SIZE]
Definition: sbr.h:83
static float sbr_qmf_window_us[640]
unsigned f_indexnoise
Definition: sbr.h:108
av_cold void ff_sbrdsp_init(SBRDSPContext *s)
Definition: sbrdsp.c:271
common internal API header
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
Definition: aacsbr.c:1016
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
Definition: aacsbr.c:133
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:105
AAC Spectral Band Replication function declarations.
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:66
uint8_t bs_freq_scale
Definition: sbr.h:51
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
Definition: aacsbr.c:818
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:954
unsigned bs_limiter_gains
Definition: sbr.h:148
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:287
float W[2][32][32][2]
QMF values of the original signal.
Definition: sbr.h:91
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:198
#define SBR_VLC_ROW(name)
Definition: aacsbr.c:92
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:555
AAC definitions and structures.
int n
Definition: avisynth_c.h:589
float X_low[32][40][2]
QMF low frequency input to the HF generator.
Definition: sbr.h:184
void(* neg_odd_64)(float *x)
Definition: sbrdsp.h:29
uint8_t bs_freq_res[7]
Definition: sbr.h:70
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:1539
av_cold void ff_ps_init(void)
Definition: aacps.c:939
int start
Definition: aacps.h:42
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
float s_m[7][48]
Sinusoidal levels.
Definition: sbr.h:204
#define exp2f(x)
Definition: libm.h:82
AVS_Value src
Definition: avisynth_c.h:524
float X_high[64][40][2]
QMF output of the HF generator.
Definition: sbr.h:186
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
Definition: aacsbr.c:182
main external API structure.
Definition: avcodec.h:1239
Definition: aacsbr.c:74
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
unsigned m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:158
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the product of two vectors of floats, add a third vector of floats and store the result in ...
Definition: float_dsp.h:121
Replacements for frequently missing libm functions.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:304
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:297
#define W(a, i, v)
Definition: jpegls.h:122
int synthesis_filterbank_samples_offset
Definition: sbr.h:85
int mdct_bits
Definition: fft.h:94
unsigned k[5]
k0, k1, k2
Definition: sbr.h:153
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_low[32][40][2], const float W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
Definition: aacsbr.c:1339
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:1318
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, float X_low[32][40][2], const float W[2][32][32][2], int buf_idx)
Definition: sbr.h:119
uint8_t bs_noise_bands
Definition: sbr.h:53
#define ARCH_MIPS
Definition: config.h:26
av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
Definition: aacsbr.c:143
main AAC context
Definition: aac.h:264
AACSBRContext c
Definition: sbr.h:210
void(* qmf_post_shuffle)(float W[32][2], const float *z)
Definition: sbrdsp.h:31
uint8_t bs_stop_freq
Definition: sbr.h:44
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
Definition: aacsbr.c:923
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:171
void(* autocorrelate)(const float x[40][2], float phi[3][2][2])
Definition: sbrdsp.h:34
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
Definition: aacsbr.c:172
void(* qmf_pre_shuffle)(float *z)
Definition: sbrdsp.h:30
float noise_facs[3][5]
Noise scalefactors.
Definition: sbr.h:101
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
Definition: sbr.h:129
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
Definition: aacsbr.c:1057
OutputConfiguration oc[2]
Definition: aac.h:321
static const int8_t ceil_log2[]
ceil(log2(index+1))
Definition: aacsbr.c:636
float analysis_filterbank_samples[1312]
Definition: sbr.h:84
#define log2f(x)
Definition: libm.h:127
unsigned f_indexsine
Definition: sbr.h:109
#define ff_mdct_end
Definition: fft.h:168
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:182
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:103
aacsbr functions pointers
Definition: sbr.h:118
void(* hf_gen)(float(*X_high)[2], const float(*X_low)[2], const float alpha0[2], const float alpha1[2], float bw, int start, int end)
Definition: sbrdsp.h:35
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:179
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:291
unsigned bs_limiter_bands
Definition: sbr.h:147
int Ypos
QMF output of the HF adjustor.
Definition: sbr.h:93
uint8_t bs_alter_scale
Definition: sbr.h:52
Definition: aacsbr.c:72
unsigned bs_frame_class
Definition: sbr.h:67
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:65
unsigned bs_num_noise
Definition: sbr.h:71
Definition: aacsbr.c:73
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.c:83
unsigned n_q
Number of noise floor bands.
Definition: sbr.h:167
SBRDSPContext dsp
Definition: sbr.h:209
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:120
void INT64 start
Definition: avisynth_c.h:595
#define av_always_inline
Definition: attributes.h:37
float g_temp[42][48]
Definition: sbr.h:95
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
static VLC vlc_sbr[10]
Definition: aacsbr.c:82
Definition: vf_geq.c:45
unsigned bs_coupling
Definition: sbr.h:152
Spectral Band Replication.
Definition: sbr.h:137
unsigned bs_num_env
Definition: sbr.h:69
float min
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:151
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
Definition: aacsbr.c:808
PSContext ps
Definition: sbr.h:163
uint8_t bs_start_freq
Definition: sbr.h:43
void(* hf_g_filt)(float(*Y)[2], const float(*X_high)[40][2], const float *g_filt, int m_max, intptr_t ixh)
Definition: sbrdsp.h:38