00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "avcodec.h"
00028 #include "get_bits.h"
00029 #include "dsputil.h"
00030
00031
00032
00033
00034
00035
00036
00037 #include "mpegaudio.h"
00038 #include "mpegaudiodecheader.h"
00039
00040 #include "mathops.h"
00041
00042 #if CONFIG_FLOAT
00043 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
00044 # define compute_antialias compute_antialias_float
00045 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00046 # define FIXR(x) ((float)(x))
00047 # define FIXHR(x) ((float)(x))
00048 # define MULH3(x, y, s) ((s)*(y)*(x))
00049 # define MULLx(x, y, s) ((y)*(x))
00050 # define RENAME(a) a ## _float
00051 #else
00052 # define SHR(a,b) ((a)>>(b))
00053 # define compute_antialias compute_antialias_integer
00054
00055 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00056 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00057 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00058 # define MULH3(x, y, s) MULH((s)*(x), y)
00059 # define MULLx(x, y, s) MULL(x,y,s)
00060 # define RENAME(a) a
00061 #endif
00062
00063
00064
00065 #define HEADER_SIZE 4
00066
00067 #include "mpegaudiodata.h"
00068 #include "mpegaudiodectab.h"
00069
00070 #if CONFIG_FLOAT
00071 # include "fft.h"
00072 #else
00073 # include "dct32.c"
00074 #endif
00075
00076 static void compute_antialias(MPADecodeContext *s, GranuleDef *g);
00077 static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
00078 int *dither_state, OUT_INT *samples, int incr);
00079
00080
00081 static VLC huff_vlc[16];
00082 static VLC_TYPE huff_vlc_tables[
00083 0+128+128+128+130+128+154+166+
00084 142+204+190+170+542+460+662+414
00085 ][2];
00086 static const int huff_vlc_tables_sizes[16] = {
00087 0, 128, 128, 128, 130, 128, 154, 166,
00088 142, 204, 190, 170, 542, 460, 662, 414
00089 };
00090 static VLC huff_quad_vlc[2];
00091 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
00092 static const int huff_quad_vlc_tables_sizes[2] = {
00093 128, 16
00094 };
00095
00096 static uint16_t band_index_long[9][23];
00097 #include "mpegaudio_tablegen.h"
00098
00099 static INTFLOAT is_table[2][16];
00100 static INTFLOAT is_table_lsf[2][2][16];
00101 static int32_t csa_table[8][4];
00102 static float csa_table_float[8][4];
00103 static INTFLOAT mdct_win[8][36];
00104
00105 static int16_t division_tab3[1<<6 ];
00106 static int16_t division_tab5[1<<8 ];
00107 static int16_t division_tab9[1<<11];
00108
00109 static int16_t * const division_tabs[4] = {
00110 division_tab3, division_tab5, NULL, division_tab9
00111 };
00112
00113
00114 static uint16_t scale_factor_modshift[64];
00115
00116 static int32_t scale_factor_mult[15][3];
00117
00118
00119 #define SCALE_GEN(v) \
00120 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00121
00122 static const int32_t scale_factor_mult2[3][3] = {
00123 SCALE_GEN(4.0 / 3.0),
00124 SCALE_GEN(4.0 / 5.0),
00125 SCALE_GEN(4.0 / 9.0),
00126 };
00127
00128 DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
00129
00134 static void ff_region_offset2size(GranuleDef *g){
00135 int i, k, j=0;
00136 g->region_size[2] = (576 / 2);
00137 for(i=0;i<3;i++) {
00138 k = FFMIN(g->region_size[i], g->big_values);
00139 g->region_size[i] = k - j;
00140 j = k;
00141 }
00142 }
00143
00144 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
00145 if (g->block_type == 2)
00146 g->region_size[0] = (36 / 2);
00147 else {
00148 if (s->sample_rate_index <= 2)
00149 g->region_size[0] = (36 / 2);
00150 else if (s->sample_rate_index != 8)
00151 g->region_size[0] = (54 / 2);
00152 else
00153 g->region_size[0] = (108 / 2);
00154 }
00155 g->region_size[1] = (576 / 2);
00156 }
00157
00158 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
00159 int l;
00160 g->region_size[0] =
00161 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00162
00163 l = FFMIN(ra1 + ra2 + 2, 22);
00164 g->region_size[1] =
00165 band_index_long[s->sample_rate_index][l] >> 1;
00166 }
00167
00168 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
00169 if (g->block_type == 2) {
00170 if (g->switch_point) {
00171
00172
00173
00174 if (s->sample_rate_index <= 2)
00175 g->long_end = 8;
00176 else if (s->sample_rate_index != 8)
00177 g->long_end = 6;
00178 else
00179 g->long_end = 4;
00180
00181 g->short_start = 2 + (s->sample_rate_index != 8);
00182 } else {
00183 g->long_end = 0;
00184 g->short_start = 0;
00185 }
00186 } else {
00187 g->short_start = 13;
00188 g->long_end = 22;
00189 }
00190 }
00191
00192
00193
00194 static inline int l1_unscale(int n, int mant, int scale_factor)
00195 {
00196 int shift, mod;
00197 int64_t val;
00198
00199 shift = scale_factor_modshift[scale_factor];
00200 mod = shift & 3;
00201 shift >>= 2;
00202 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00203 shift += n;
00204
00205 return (int)((val + (1LL << (shift - 1))) >> shift);
00206 }
00207
00208 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00209 {
00210 int shift, mod, val;
00211
00212 shift = scale_factor_modshift[scale_factor];
00213 mod = shift & 3;
00214 shift >>= 2;
00215
00216 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00217
00218 if (shift > 0)
00219 val = (val + (1 << (shift - 1))) >> shift;
00220 return val;
00221 }
00222
00223
00224 static inline int l3_unscale(int value, int exponent)
00225 {
00226 unsigned int m;
00227 int e;
00228
00229 e = table_4_3_exp [4*value + (exponent&3)];
00230 m = table_4_3_value[4*value + (exponent&3)];
00231 e -= (exponent >> 2);
00232 assert(e>=1);
00233 if (e > 31)
00234 return 0;
00235 m = (m + (1 << (e-1))) >> e;
00236
00237 return m;
00238 }
00239
00240
00241 #define DEV_ORDER 13
00242
00243 #define POW_FRAC_BITS 24
00244 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
00245 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
00246 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
00247
00248 static int dev_4_3_coefs[DEV_ORDER];
00249
00250 #if 0
00251 static int pow_mult3[3] = {
00252 POW_FIX(1.0),
00253 POW_FIX(1.25992104989487316476),
00254 POW_FIX(1.58740105196819947474),
00255 };
00256 #endif
00257
00258 static av_cold void int_pow_init(void)
00259 {
00260 int i, a;
00261
00262 a = POW_FIX(1.0);
00263 for(i=0;i<DEV_ORDER;i++) {
00264 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
00265 dev_4_3_coefs[i] = a;
00266 }
00267 }
00268
00269 #if 0
00270
00271 static int int_pow(int i, int *exp_ptr)
00272 {
00273 int e, er, eq, j;
00274 int a, a1;
00275
00276
00277 a = i;
00278 e = POW_FRAC_BITS;
00279 while (a < (1 << (POW_FRAC_BITS - 1))) {
00280 a = a << 1;
00281 e--;
00282 }
00283 a -= (1 << POW_FRAC_BITS);
00284 a1 = 0;
00285 for(j = DEV_ORDER - 1; j >= 0; j--)
00286 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
00287 a = (1 << POW_FRAC_BITS) + a1;
00288
00289 e = e * 4;
00290 er = e % 3;
00291 eq = e / 3;
00292 a = POW_MULL(a, pow_mult3[er]);
00293 while (a >= 2 * POW_FRAC_ONE) {
00294 a = a >> 1;
00295 eq++;
00296 }
00297
00298 while (a < POW_FRAC_ONE) {
00299 a = a << 1;
00300 eq--;
00301 }
00302
00303 #if POW_FRAC_BITS > FRAC_BITS
00304 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
00305
00306 if (a >= 2 * (1 << FRAC_BITS)) {
00307 a = a >> 1;
00308 eq++;
00309 }
00310 #endif
00311 *exp_ptr = eq;
00312 return a;
00313 }
00314 #endif
00315
00316 static av_cold int decode_init(AVCodecContext * avctx)
00317 {
00318 MPADecodeContext *s = avctx->priv_data;
00319 static int init=0;
00320 int i, j, k;
00321
00322 s->avctx = avctx;
00323 s->apply_window_mp3 = apply_window_mp3_c;
00324 #if HAVE_MMX && CONFIG_FLOAT
00325 ff_mpegaudiodec_init_mmx(s);
00326 #endif
00327 #if CONFIG_FLOAT
00328 ff_dct_init(&s->dct, 5, DCT_II);
00329 #endif
00330 if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
00331
00332 avctx->sample_fmt= OUT_FMT;
00333 s->error_recognition= avctx->error_recognition;
00334
00335 if (!init && !avctx->parse_only) {
00336 int offset;
00337
00338
00339 for(i=0;i<64;i++) {
00340 int shift, mod;
00341
00342 shift = (i / 3);
00343 mod = i % 3;
00344 scale_factor_modshift[i] = mod | (shift << 2);
00345 }
00346
00347
00348 for(i=0;i<15;i++) {
00349 int n, norm;
00350 n = i + 2;
00351 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00352 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
00353 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00354 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00355 av_dlog(avctx, "%d: norm=%x s=%x %x %x\n",
00356 i, norm,
00357 scale_factor_mult[i][0],
00358 scale_factor_mult[i][1],
00359 scale_factor_mult[i][2]);
00360 }
00361
00362 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00363
00364
00365 offset = 0;
00366 for(i=1;i<16;i++) {
00367 const HuffTable *h = &mpa_huff_tables[i];
00368 int xsize, x, y;
00369 uint8_t tmp_bits [512];
00370 uint16_t tmp_codes[512];
00371
00372 memset(tmp_bits , 0, sizeof(tmp_bits ));
00373 memset(tmp_codes, 0, sizeof(tmp_codes));
00374
00375 xsize = h->xsize;
00376
00377 j = 0;
00378 for(x=0;x<xsize;x++) {
00379 for(y=0;y<xsize;y++){
00380 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00381 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00382 }
00383 }
00384
00385
00386 huff_vlc[i].table = huff_vlc_tables+offset;
00387 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00388 init_vlc(&huff_vlc[i], 7, 512,
00389 tmp_bits, 1, 1, tmp_codes, 2, 2,
00390 INIT_VLC_USE_NEW_STATIC);
00391 offset += huff_vlc_tables_sizes[i];
00392 }
00393 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00394
00395 offset = 0;
00396 for(i=0;i<2;i++) {
00397 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00398 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00399 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00400 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00401 INIT_VLC_USE_NEW_STATIC);
00402 offset += huff_quad_vlc_tables_sizes[i];
00403 }
00404 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00405
00406 for(i=0;i<9;i++) {
00407 k = 0;
00408 for(j=0;j<22;j++) {
00409 band_index_long[i][j] = k;
00410 k += band_size_long[i][j];
00411 }
00412 band_index_long[i][22] = k;
00413 }
00414
00415
00416
00417 int_pow_init();
00418 mpegaudio_tableinit();
00419
00420 for (i = 0; i < 4; i++)
00421 if (ff_mpa_quant_bits[i] < 0)
00422 for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) {
00423 int val1, val2, val3, steps;
00424 int val = j;
00425 steps = ff_mpa_quant_steps[i];
00426 val1 = val % steps;
00427 val /= steps;
00428 val2 = val % steps;
00429 val3 = val / steps;
00430 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00431 }
00432
00433
00434 for(i=0;i<7;i++) {
00435 float f;
00436 INTFLOAT v;
00437 if (i != 6) {
00438 f = tan((double)i * M_PI / 12.0);
00439 v = FIXR(f / (1.0 + f));
00440 } else {
00441 v = FIXR(1.0);
00442 }
00443 is_table[0][i] = v;
00444 is_table[1][6 - i] = v;
00445 }
00446
00447 for(i=7;i<16;i++)
00448 is_table[0][i] = is_table[1][i] = 0.0;
00449
00450 for(i=0;i<16;i++) {
00451 double f;
00452 int e, k;
00453
00454 for(j=0;j<2;j++) {
00455 e = -(j + 1) * ((i + 1) >> 1);
00456 f = pow(2.0, e / 4.0);
00457 k = i & 1;
00458 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00459 is_table_lsf[j][k][i] = FIXR(1.0);
00460 av_dlog(avctx, "is_table_lsf %d %d: %x %x\n",
00461 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
00462 }
00463 }
00464
00465 for(i=0;i<8;i++) {
00466 float ci, cs, ca;
00467 ci = ci_table[i];
00468 cs = 1.0 / sqrt(1.0 + ci * ci);
00469 ca = cs * ci;
00470 csa_table[i][0] = FIXHR(cs/4);
00471 csa_table[i][1] = FIXHR(ca/4);
00472 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00473 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00474 csa_table_float[i][0] = cs;
00475 csa_table_float[i][1] = ca;
00476 csa_table_float[i][2] = ca + cs;
00477 csa_table_float[i][3] = ca - cs;
00478 }
00479
00480
00481 for(i=0;i<36;i++) {
00482 for(j=0; j<4; j++){
00483 double d;
00484
00485 if(j==2 && i%3 != 1)
00486 continue;
00487
00488 d= sin(M_PI * (i + 0.5) / 36.0);
00489 if(j==1){
00490 if (i>=30) d= 0;
00491 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
00492 else if(i>=18) d= 1;
00493 }else if(j==3){
00494 if (i< 6) d= 0;
00495 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
00496 else if(i< 18) d= 1;
00497 }
00498
00499 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
00500
00501 if(j==2)
00502 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
00503 else
00504 mdct_win[j][i ] = FIXHR((d / (1<<5)));
00505 }
00506 }
00507
00508
00509
00510 for(j=0;j<4;j++) {
00511 for(i=0;i<36;i+=2) {
00512 mdct_win[j + 4][i] = mdct_win[j][i];
00513 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
00514 }
00515 }
00516
00517 init = 1;
00518 }
00519
00520 if (avctx->codec_id == CODEC_ID_MP3ADU)
00521 s->adu_mode = 1;
00522 return 0;
00523 }
00524
00525
00526 #if CONFIG_FLOAT
00527 static inline float round_sample(float *sum)
00528 {
00529 float sum1=*sum;
00530 *sum = 0;
00531 return sum1;
00532 }
00533
00534
00535 #define MACS(rt, ra, rb) rt+=(ra)*(rb)
00536
00537
00538 #define MULS(ra, rb) ((ra)*(rb))
00539
00540 #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
00541
00542 #elif FRAC_BITS <= 15
00543
00544 static inline int round_sample(int *sum)
00545 {
00546 int sum1;
00547 sum1 = (*sum) >> OUT_SHIFT;
00548 *sum &= (1<<OUT_SHIFT)-1;
00549 return av_clip(sum1, OUT_MIN, OUT_MAX);
00550 }
00551
00552
00553 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
00554
00555
00556 #define MULS(ra, rb) MUL16(ra, rb)
00557
00558 #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
00559
00560 #else
00561
00562 static inline int round_sample(int64_t *sum)
00563 {
00564 int sum1;
00565 sum1 = (int)((*sum) >> OUT_SHIFT);
00566 *sum &= (1<<OUT_SHIFT)-1;
00567 return av_clip(sum1, OUT_MIN, OUT_MAX);
00568 }
00569
00570 # define MULS(ra, rb) MUL64(ra, rb)
00571 # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
00572 # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
00573 #endif
00574
00575 #define SUM8(op, sum, w, p) \
00576 { \
00577 op(sum, (w)[0 * 64], (p)[0 * 64]); \
00578 op(sum, (w)[1 * 64], (p)[1 * 64]); \
00579 op(sum, (w)[2 * 64], (p)[2 * 64]); \
00580 op(sum, (w)[3 * 64], (p)[3 * 64]); \
00581 op(sum, (w)[4 * 64], (p)[4 * 64]); \
00582 op(sum, (w)[5 * 64], (p)[5 * 64]); \
00583 op(sum, (w)[6 * 64], (p)[6 * 64]); \
00584 op(sum, (w)[7 * 64], (p)[7 * 64]); \
00585 }
00586
00587 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
00588 { \
00589 INTFLOAT tmp;\
00590 tmp = p[0 * 64];\
00591 op1(sum1, (w1)[0 * 64], tmp);\
00592 op2(sum2, (w2)[0 * 64], tmp);\
00593 tmp = p[1 * 64];\
00594 op1(sum1, (w1)[1 * 64], tmp);\
00595 op2(sum2, (w2)[1 * 64], tmp);\
00596 tmp = p[2 * 64];\
00597 op1(sum1, (w1)[2 * 64], tmp);\
00598 op2(sum2, (w2)[2 * 64], tmp);\
00599 tmp = p[3 * 64];\
00600 op1(sum1, (w1)[3 * 64], tmp);\
00601 op2(sum2, (w2)[3 * 64], tmp);\
00602 tmp = p[4 * 64];\
00603 op1(sum1, (w1)[4 * 64], tmp);\
00604 op2(sum2, (w2)[4 * 64], tmp);\
00605 tmp = p[5 * 64];\
00606 op1(sum1, (w1)[5 * 64], tmp);\
00607 op2(sum2, (w2)[5 * 64], tmp);\
00608 tmp = p[6 * 64];\
00609 op1(sum1, (w1)[6 * 64], tmp);\
00610 op2(sum2, (w2)[6 * 64], tmp);\
00611 tmp = p[7 * 64];\
00612 op1(sum1, (w1)[7 * 64], tmp);\
00613 op2(sum2, (w2)[7 * 64], tmp);\
00614 }
00615
00616 void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
00617 {
00618 int i, j;
00619
00620
00621 for(i=0;i<257;i++) {
00622 INTFLOAT v;
00623 v = ff_mpa_enwindow[i];
00624 #if CONFIG_FLOAT
00625 v *= 1.0 / (1LL<<(16 + FRAC_BITS));
00626 #elif WFRAC_BITS < 16
00627 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
00628 #endif
00629 window[i] = v;
00630 if ((i & 63) != 0)
00631 v = -v;
00632 if (i != 0)
00633 window[512 - i] = v;
00634 }
00635
00636
00637 for(i=0; i < 8; i++)
00638 for(j=0; j < 16; j++)
00639 window[512+16*i+j] = window[64*i+32-j];
00640
00641 for(i=0; i < 8; i++)
00642 for(j=0; j < 16; j++)
00643 window[512+128+16*i+j] = window[64*i+48-j];
00644 }
00645
00646 static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
00647 int *dither_state, OUT_INT *samples, int incr)
00648 {
00649 register const MPA_INT *w, *w2, *p;
00650 int j;
00651 OUT_INT *samples2;
00652 #if CONFIG_FLOAT
00653 float sum, sum2;
00654 #elif FRAC_BITS <= 15
00655 int sum, sum2;
00656 #else
00657 int64_t sum, sum2;
00658 #endif
00659
00660
00661 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
00662
00663 samples2 = samples + 31 * incr;
00664 w = window;
00665 w2 = window + 31;
00666
00667 sum = *dither_state;
00668 p = synth_buf + 16;
00669 SUM8(MACS, sum, w, p);
00670 p = synth_buf + 48;
00671 SUM8(MLSS, sum, w + 32, p);
00672 *samples = round_sample(&sum);
00673 samples += incr;
00674 w++;
00675
00676
00677
00678 for(j=1;j<16;j++) {
00679 sum2 = 0;
00680 p = synth_buf + 16 + j;
00681 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
00682 p = synth_buf + 48 - j;
00683 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
00684
00685 *samples = round_sample(&sum);
00686 samples += incr;
00687 sum += sum2;
00688 *samples2 = round_sample(&sum);
00689 samples2 -= incr;
00690 w++;
00691 w2--;
00692 }
00693
00694 p = synth_buf + 32;
00695 SUM8(MLSS, sum, w + 32, p);
00696 *samples = round_sample(&sum);
00697 *dither_state= sum;
00698 }
00699
00700
00701
00702
00703
00704 #if !CONFIG_FLOAT
00705 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
00706 MPA_INT *window, int *dither_state,
00707 OUT_INT *samples, int incr,
00708 INTFLOAT sb_samples[SBLIMIT])
00709 {
00710 register MPA_INT *synth_buf;
00711 int offset;
00712 #if FRAC_BITS <= 15
00713 int32_t tmp[32];
00714 int j;
00715 #endif
00716
00717 offset = *synth_buf_offset;
00718 synth_buf = synth_buf_ptr + offset;
00719
00720 #if FRAC_BITS <= 15
00721 dct32(tmp, sb_samples);
00722 for(j=0;j<32;j++) {
00723
00724
00725 synth_buf[j] = av_clip_int16(tmp[j]);
00726 }
00727 #else
00728 dct32(synth_buf, sb_samples);
00729 #endif
00730
00731 apply_window_mp3_c(synth_buf, window, dither_state, samples, incr);
00732
00733 offset = (offset - 32) & 511;
00734 *synth_buf_offset = offset;
00735 }
00736 #endif
00737
00738 #define C3 FIXHR(0.86602540378443864676/2)
00739
00740
00741 static const INTFLOAT icos36[9] = {
00742 FIXR(0.50190991877167369479),
00743 FIXR(0.51763809020504152469),
00744 FIXR(0.55168895948124587824),
00745 FIXR(0.61038729438072803416),
00746 FIXR(0.70710678118654752439),
00747 FIXR(0.87172339781054900991),
00748 FIXR(1.18310079157624925896),
00749 FIXR(1.93185165257813657349),
00750 FIXR(5.73685662283492756461),
00751 };
00752
00753
00754 static const INTFLOAT icos36h[9] = {
00755 FIXHR(0.50190991877167369479/2),
00756 FIXHR(0.51763809020504152469/2),
00757 FIXHR(0.55168895948124587824/2),
00758 FIXHR(0.61038729438072803416/2),
00759 FIXHR(0.70710678118654752439/2),
00760 FIXHR(0.87172339781054900991/2),
00761 FIXHR(1.18310079157624925896/4),
00762 FIXHR(1.93185165257813657349/4),
00763
00764 };
00765
00766
00767
00768 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00769 {
00770 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00771
00772 in0= in[0*3];
00773 in1= in[1*3] + in[0*3];
00774 in2= in[2*3] + in[1*3];
00775 in3= in[3*3] + in[2*3];
00776 in4= in[4*3] + in[3*3];
00777 in5= in[5*3] + in[4*3];
00778 in5 += in3;
00779 in3 += in1;
00780
00781 in2= MULH3(in2, C3, 2);
00782 in3= MULH3(in3, C3, 4);
00783
00784 t1 = in0 - in4;
00785 t2 = MULH3(in1 - in5, icos36h[4], 2);
00786
00787 out[ 7]=
00788 out[10]= t1 + t2;
00789 out[ 1]=
00790 out[ 4]= t1 - t2;
00791
00792 in0 += SHR(in4, 1);
00793 in4 = in0 + in2;
00794 in5 += 2*in1;
00795 in1 = MULH3(in5 + in3, icos36h[1], 1);
00796 out[ 8]=
00797 out[ 9]= in4 + in1;
00798 out[ 2]=
00799 out[ 3]= in4 - in1;
00800
00801 in0 -= in2;
00802 in5 = MULH3(in5 - in3, icos36h[7], 2);
00803 out[ 0]=
00804 out[ 5]= in0 - in5;
00805 out[ 6]=
00806 out[11]= in0 + in5;
00807 }
00808
00809
00810 #define C1 FIXHR(0.98480775301220805936/2)
00811 #define C2 FIXHR(0.93969262078590838405/2)
00812 #define C3 FIXHR(0.86602540378443864676/2)
00813 #define C4 FIXHR(0.76604444311897803520/2)
00814 #define C5 FIXHR(0.64278760968653932632/2)
00815 #define C6 FIXHR(0.5/2)
00816 #define C7 FIXHR(0.34202014332566873304/2)
00817 #define C8 FIXHR(0.17364817766693034885/2)
00818
00819
00820
00821 static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
00822 {
00823 int i, j;
00824 INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
00825 INTFLOAT tmp[18], *tmp1, *in1;
00826
00827 for(i=17;i>=1;i--)
00828 in[i] += in[i-1];
00829 for(i=17;i>=3;i-=2)
00830 in[i] += in[i-2];
00831
00832 for(j=0;j<2;j++) {
00833 tmp1 = tmp + j;
00834 in1 = in + j;
00835
00836 t2 = in1[2*4] + in1[2*8] - in1[2*2];
00837
00838 t3 = in1[2*0] + SHR(in1[2*6],1);
00839 t1 = in1[2*0] - in1[2*6];
00840 tmp1[ 6] = t1 - SHR(t2,1);
00841 tmp1[16] = t1 + t2;
00842
00843 t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
00844 t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
00845 t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
00846
00847 tmp1[10] = t3 - t0 - t2;
00848 tmp1[ 2] = t3 + t0 + t1;
00849 tmp1[14] = t3 + t2 - t1;
00850
00851 tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
00852 t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
00853 t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
00854 t0 = MULH3(in1[2*3], C3, 2);
00855
00856 t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
00857
00858 tmp1[ 0] = t2 + t3 + t0;
00859 tmp1[12] = t2 + t1 - t0;
00860 tmp1[ 8] = t3 - t1 - t0;
00861 }
00862
00863 i = 0;
00864 for(j=0;j<4;j++) {
00865 t0 = tmp[i];
00866 t1 = tmp[i + 2];
00867 s0 = t1 + t0;
00868 s2 = t1 - t0;
00869
00870 t2 = tmp[i + 1];
00871 t3 = tmp[i + 3];
00872 s1 = MULH3(t3 + t2, icos36h[j], 2);
00873 s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
00874
00875 t0 = s0 + s1;
00876 t1 = s0 - s1;
00877 out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
00878 out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
00879 buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
00880 buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
00881
00882 t0 = s2 + s3;
00883 t1 = s2 - s3;
00884 out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
00885 out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
00886 buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
00887 buf[ + j] = MULH3(t0, win[18 + j], 1);
00888 i += 4;
00889 }
00890
00891 s0 = tmp[16];
00892 s1 = MULH3(tmp[17], icos36h[4], 2);
00893 t0 = s0 + s1;
00894 t1 = s0 - s1;
00895 out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
00896 out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
00897 buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
00898 buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
00899 }
00900
00901
00902 static int mp_decode_layer1(MPADecodeContext *s)
00903 {
00904 int bound, i, v, n, ch, j, mant;
00905 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00906 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00907
00908 if (s->mode == MPA_JSTEREO)
00909 bound = (s->mode_ext + 1) * 4;
00910 else
00911 bound = SBLIMIT;
00912
00913
00914 for(i=0;i<bound;i++) {
00915 for(ch=0;ch<s->nb_channels;ch++) {
00916 allocation[ch][i] = get_bits(&s->gb, 4);
00917 }
00918 }
00919 for(i=bound;i<SBLIMIT;i++) {
00920 allocation[0][i] = get_bits(&s->gb, 4);
00921 }
00922
00923
00924 for(i=0;i<bound;i++) {
00925 for(ch=0;ch<s->nb_channels;ch++) {
00926 if (allocation[ch][i])
00927 scale_factors[ch][i] = get_bits(&s->gb, 6);
00928 }
00929 }
00930 for(i=bound;i<SBLIMIT;i++) {
00931 if (allocation[0][i]) {
00932 scale_factors[0][i] = get_bits(&s->gb, 6);
00933 scale_factors[1][i] = get_bits(&s->gb, 6);
00934 }
00935 }
00936
00937
00938 for(j=0;j<12;j++) {
00939 for(i=0;i<bound;i++) {
00940 for(ch=0;ch<s->nb_channels;ch++) {
00941 n = allocation[ch][i];
00942 if (n) {
00943 mant = get_bits(&s->gb, n + 1);
00944 v = l1_unscale(n, mant, scale_factors[ch][i]);
00945 } else {
00946 v = 0;
00947 }
00948 s->sb_samples[ch][j][i] = v;
00949 }
00950 }
00951 for(i=bound;i<SBLIMIT;i++) {
00952 n = allocation[0][i];
00953 if (n) {
00954 mant = get_bits(&s->gb, n + 1);
00955 v = l1_unscale(n, mant, scale_factors[0][i]);
00956 s->sb_samples[0][j][i] = v;
00957 v = l1_unscale(n, mant, scale_factors[1][i]);
00958 s->sb_samples[1][j][i] = v;
00959 } else {
00960 s->sb_samples[0][j][i] = 0;
00961 s->sb_samples[1][j][i] = 0;
00962 }
00963 }
00964 }
00965 return 12;
00966 }
00967
00968 static int mp_decode_layer2(MPADecodeContext *s)
00969 {
00970 int sblimit;
00971 const unsigned char *alloc_table;
00972 int table, bit_alloc_bits, i, j, ch, bound, v;
00973 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00974 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00975 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00976 int scale, qindex, bits, steps, k, l, m, b;
00977
00978
00979 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00980 s->sample_rate, s->lsf);
00981 sblimit = ff_mpa_sblimit_table[table];
00982 alloc_table = ff_mpa_alloc_tables[table];
00983
00984 if (s->mode == MPA_JSTEREO)
00985 bound = (s->mode_ext + 1) * 4;
00986 else
00987 bound = sblimit;
00988
00989 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00990
00991
00992 if( bound > sblimit ) bound = sblimit;
00993
00994
00995 j = 0;
00996 for(i=0;i<bound;i++) {
00997 bit_alloc_bits = alloc_table[j];
00998 for(ch=0;ch<s->nb_channels;ch++) {
00999 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
01000 }
01001 j += 1 << bit_alloc_bits;
01002 }
01003 for(i=bound;i<sblimit;i++) {
01004 bit_alloc_bits = alloc_table[j];
01005 v = get_bits(&s->gb, bit_alloc_bits);
01006 bit_alloc[0][i] = v;
01007 bit_alloc[1][i] = v;
01008 j += 1 << bit_alloc_bits;
01009 }
01010
01011
01012 for(i=0;i<sblimit;i++) {
01013 for(ch=0;ch<s->nb_channels;ch++) {
01014 if (bit_alloc[ch][i])
01015 scale_code[ch][i] = get_bits(&s->gb, 2);
01016 }
01017 }
01018
01019
01020 for(i=0;i<sblimit;i++) {
01021 for(ch=0;ch<s->nb_channels;ch++) {
01022 if (bit_alloc[ch][i]) {
01023 sf = scale_factors[ch][i];
01024 switch(scale_code[ch][i]) {
01025 default:
01026 case 0:
01027 sf[0] = get_bits(&s->gb, 6);
01028 sf[1] = get_bits(&s->gb, 6);
01029 sf[2] = get_bits(&s->gb, 6);
01030 break;
01031 case 2:
01032 sf[0] = get_bits(&s->gb, 6);
01033 sf[1] = sf[0];
01034 sf[2] = sf[0];
01035 break;
01036 case 1:
01037 sf[0] = get_bits(&s->gb, 6);
01038 sf[2] = get_bits(&s->gb, 6);
01039 sf[1] = sf[0];
01040 break;
01041 case 3:
01042 sf[0] = get_bits(&s->gb, 6);
01043 sf[2] = get_bits(&s->gb, 6);
01044 sf[1] = sf[2];
01045 break;
01046 }
01047 }
01048 }
01049 }
01050
01051
01052 for(k=0;k<3;k++) {
01053 for(l=0;l<12;l+=3) {
01054 j = 0;
01055 for(i=0;i<bound;i++) {
01056 bit_alloc_bits = alloc_table[j];
01057 for(ch=0;ch<s->nb_channels;ch++) {
01058 b = bit_alloc[ch][i];
01059 if (b) {
01060 scale = scale_factors[ch][i][k];
01061 qindex = alloc_table[j+b];
01062 bits = ff_mpa_quant_bits[qindex];
01063 if (bits < 0) {
01064 int v2;
01065
01066 v = get_bits(&s->gb, -bits);
01067 v2 = division_tabs[qindex][v];
01068 steps = ff_mpa_quant_steps[qindex];
01069
01070 s->sb_samples[ch][k * 12 + l + 0][i] =
01071 l2_unscale_group(steps, v2 & 15, scale);
01072 s->sb_samples[ch][k * 12 + l + 1][i] =
01073 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
01074 s->sb_samples[ch][k * 12 + l + 2][i] =
01075 l2_unscale_group(steps, v2 >> 8 , scale);
01076 } else {
01077 for(m=0;m<3;m++) {
01078 v = get_bits(&s->gb, bits);
01079 v = l1_unscale(bits - 1, v, scale);
01080 s->sb_samples[ch][k * 12 + l + m][i] = v;
01081 }
01082 }
01083 } else {
01084 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
01085 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
01086 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
01087 }
01088 }
01089
01090 j += 1 << bit_alloc_bits;
01091 }
01092
01093 for(i=bound;i<sblimit;i++) {
01094 bit_alloc_bits = alloc_table[j];
01095 b = bit_alloc[0][i];
01096 if (b) {
01097 int mant, scale0, scale1;
01098 scale0 = scale_factors[0][i][k];
01099 scale1 = scale_factors[1][i][k];
01100 qindex = alloc_table[j+b];
01101 bits = ff_mpa_quant_bits[qindex];
01102 if (bits < 0) {
01103
01104 v = get_bits(&s->gb, -bits);
01105 steps = ff_mpa_quant_steps[qindex];
01106 mant = v % steps;
01107 v = v / steps;
01108 s->sb_samples[0][k * 12 + l + 0][i] =
01109 l2_unscale_group(steps, mant, scale0);
01110 s->sb_samples[1][k * 12 + l + 0][i] =
01111 l2_unscale_group(steps, mant, scale1);
01112 mant = v % steps;
01113 v = v / steps;
01114 s->sb_samples[0][k * 12 + l + 1][i] =
01115 l2_unscale_group(steps, mant, scale0);
01116 s->sb_samples[1][k * 12 + l + 1][i] =
01117 l2_unscale_group(steps, mant, scale1);
01118 s->sb_samples[0][k * 12 + l + 2][i] =
01119 l2_unscale_group(steps, v, scale0);
01120 s->sb_samples[1][k * 12 + l + 2][i] =
01121 l2_unscale_group(steps, v, scale1);
01122 } else {
01123 for(m=0;m<3;m++) {
01124 mant = get_bits(&s->gb, bits);
01125 s->sb_samples[0][k * 12 + l + m][i] =
01126 l1_unscale(bits - 1, mant, scale0);
01127 s->sb_samples[1][k * 12 + l + m][i] =
01128 l1_unscale(bits - 1, mant, scale1);
01129 }
01130 }
01131 } else {
01132 s->sb_samples[0][k * 12 + l + 0][i] = 0;
01133 s->sb_samples[0][k * 12 + l + 1][i] = 0;
01134 s->sb_samples[0][k * 12 + l + 2][i] = 0;
01135 s->sb_samples[1][k * 12 + l + 0][i] = 0;
01136 s->sb_samples[1][k * 12 + l + 1][i] = 0;
01137 s->sb_samples[1][k * 12 + l + 2][i] = 0;
01138 }
01139
01140 j += 1 << bit_alloc_bits;
01141 }
01142
01143 for(i=sblimit;i<SBLIMIT;i++) {
01144 for(ch=0;ch<s->nb_channels;ch++) {
01145 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
01146 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
01147 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
01148 }
01149 }
01150 }
01151 }
01152 return 3 * 12;
01153 }
01154
01155 #define SPLIT(dst,sf,n)\
01156 if(n==3){\
01157 int m= (sf*171)>>9;\
01158 dst= sf - 3*m;\
01159 sf=m;\
01160 }else if(n==4){\
01161 dst= sf&3;\
01162 sf>>=2;\
01163 }else if(n==5){\
01164 int m= (sf*205)>>10;\
01165 dst= sf - 5*m;\
01166 sf=m;\
01167 }else if(n==6){\
01168 int m= (sf*171)>>10;\
01169 dst= sf - 6*m;\
01170 sf=m;\
01171 }else{\
01172 dst=0;\
01173 }
01174
01175 static av_always_inline void lsf_sf_expand(int *slen,
01176 int sf, int n1, int n2, int n3)
01177 {
01178 SPLIT(slen[3], sf, n3)
01179 SPLIT(slen[2], sf, n2)
01180 SPLIT(slen[1], sf, n1)
01181 slen[0] = sf;
01182 }
01183
01184 static void exponents_from_scale_factors(MPADecodeContext *s,
01185 GranuleDef *g,
01186 int16_t *exponents)
01187 {
01188 const uint8_t *bstab, *pretab;
01189 int len, i, j, k, l, v0, shift, gain, gains[3];
01190 int16_t *exp_ptr;
01191
01192 exp_ptr = exponents;
01193 gain = g->global_gain - 210;
01194 shift = g->scalefac_scale + 1;
01195
01196 bstab = band_size_long[s->sample_rate_index];
01197 pretab = mpa_pretab[g->preflag];
01198 for(i=0;i<g->long_end;i++) {
01199 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
01200 len = bstab[i];
01201 for(j=len;j>0;j--)
01202 *exp_ptr++ = v0;
01203 }
01204
01205 if (g->short_start < 13) {
01206 bstab = band_size_short[s->sample_rate_index];
01207 gains[0] = gain - (g->subblock_gain[0] << 3);
01208 gains[1] = gain - (g->subblock_gain[1] << 3);
01209 gains[2] = gain - (g->subblock_gain[2] << 3);
01210 k = g->long_end;
01211 for(i=g->short_start;i<13;i++) {
01212 len = bstab[i];
01213 for(l=0;l<3;l++) {
01214 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
01215 for(j=len;j>0;j--)
01216 *exp_ptr++ = v0;
01217 }
01218 }
01219 }
01220 }
01221
01222
01223 static inline int get_bitsz(GetBitContext *s, int n)
01224 {
01225 if (n == 0)
01226 return 0;
01227 else
01228 return get_bits(s, n);
01229 }
01230
01231
01232 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
01233 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
01234 s->gb= s->in_gb;
01235 s->in_gb.buffer=NULL;
01236 assert((get_bits_count(&s->gb) & 7) == 0);
01237 skip_bits_long(&s->gb, *pos - *end_pos);
01238 *end_pos2=
01239 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
01240 *pos= get_bits_count(&s->gb);
01241 }
01242 }
01243
01244
01245
01246
01247
01248
01249
01250 #if CONFIG_FLOAT
01251 #define READ_FLIP_SIGN(dst,src)\
01252 v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
01253 AV_WN32A(dst, v);
01254 #else
01255 #define READ_FLIP_SIGN(dst,src)\
01256 v= -get_bits1(&s->gb);\
01257 *(dst) = (*(src) ^ v) - v;
01258 #endif
01259
01260 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
01261 int16_t *exponents, int end_pos2)
01262 {
01263 int s_index;
01264 int i;
01265 int last_pos, bits_left;
01266 VLC *vlc;
01267 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
01268
01269
01270 s_index = 0;
01271 for(i=0;i<3;i++) {
01272 int j, k, l, linbits;
01273 j = g->region_size[i];
01274 if (j == 0)
01275 continue;
01276
01277 k = g->table_select[i];
01278 l = mpa_huff_data[k][0];
01279 linbits = mpa_huff_data[k][1];
01280 vlc = &huff_vlc[l];
01281
01282 if(!l){
01283 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
01284 s_index += 2*j;
01285 continue;
01286 }
01287
01288
01289 for(;j>0;j--) {
01290 int exponent, x, y;
01291 int v;
01292 int pos= get_bits_count(&s->gb);
01293
01294 if (pos >= end_pos){
01295
01296 switch_buffer(s, &pos, &end_pos, &end_pos2);
01297
01298 if(pos >= end_pos)
01299 break;
01300 }
01301 y = get_vlc2(&s->gb, vlc->table, 7, 3);
01302
01303 if(!y){
01304 g->sb_hybrid[s_index ] =
01305 g->sb_hybrid[s_index+1] = 0;
01306 s_index += 2;
01307 continue;
01308 }
01309
01310 exponent= exponents[s_index];
01311
01312 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
01313 i, g->region_size[i] - j, x, y, exponent);
01314 if(y&16){
01315 x = y >> 5;
01316 y = y & 0x0f;
01317 if (x < 15){
01318 READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
01319 }else{
01320 x += get_bitsz(&s->gb, linbits);
01321 v = l3_unscale(x, exponent);
01322 if (get_bits1(&s->gb))
01323 v = -v;
01324 g->sb_hybrid[s_index] = v;
01325 }
01326 if (y < 15){
01327 READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
01328 }else{
01329 y += get_bitsz(&s->gb, linbits);
01330 v = l3_unscale(y, exponent);
01331 if (get_bits1(&s->gb))
01332 v = -v;
01333 g->sb_hybrid[s_index+1] = v;
01334 }
01335 }else{
01336 x = y >> 5;
01337 y = y & 0x0f;
01338 x += y;
01339 if (x < 15){
01340 READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
01341 }else{
01342 x += get_bitsz(&s->gb, linbits);
01343 v = l3_unscale(x, exponent);
01344 if (get_bits1(&s->gb))
01345 v = -v;
01346 g->sb_hybrid[s_index+!!y] = v;
01347 }
01348 g->sb_hybrid[s_index+ !y] = 0;
01349 }
01350 s_index+=2;
01351 }
01352 }
01353
01354
01355 vlc = &huff_quad_vlc[g->count1table_select];
01356 last_pos=0;
01357 while (s_index <= 572) {
01358 int pos, code;
01359 pos = get_bits_count(&s->gb);
01360 if (pos >= end_pos) {
01361 if (pos > end_pos2 && last_pos){
01362
01363
01364 s_index -= 4;
01365 skip_bits_long(&s->gb, last_pos - pos);
01366 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
01367 if(s->error_recognition >= FF_ER_COMPLIANT)
01368 s_index=0;
01369 break;
01370 }
01371
01372 switch_buffer(s, &pos, &end_pos, &end_pos2);
01373
01374 if(pos >= end_pos)
01375 break;
01376 }
01377 last_pos= pos;
01378
01379 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
01380 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
01381 g->sb_hybrid[s_index+0]=
01382 g->sb_hybrid[s_index+1]=
01383 g->sb_hybrid[s_index+2]=
01384 g->sb_hybrid[s_index+3]= 0;
01385 while(code){
01386 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
01387 int v;
01388 int pos= s_index+idxtab[code];
01389 code ^= 8>>idxtab[code];
01390 READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
01391 }
01392 s_index+=4;
01393 }
01394
01395 bits_left = end_pos2 - get_bits_count(&s->gb);
01396
01397 if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
01398 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01399 s_index=0;
01400 }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
01401 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01402 s_index=0;
01403 }
01404 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
01405 skip_bits_long(&s->gb, bits_left);
01406
01407 i= get_bits_count(&s->gb);
01408 switch_buffer(s, &i, &end_pos, &end_pos2);
01409
01410 return 0;
01411 }
01412
01413
01414
01415
01416 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01417 {
01418 int i, j, len;
01419 INTFLOAT *ptr, *dst, *ptr1;
01420 INTFLOAT tmp[576];
01421
01422 if (g->block_type != 2)
01423 return;
01424
01425 if (g->switch_point) {
01426 if (s->sample_rate_index != 8) {
01427 ptr = g->sb_hybrid + 36;
01428 } else {
01429 ptr = g->sb_hybrid + 48;
01430 }
01431 } else {
01432 ptr = g->sb_hybrid;
01433 }
01434
01435 for(i=g->short_start;i<13;i++) {
01436 len = band_size_short[s->sample_rate_index][i];
01437 ptr1 = ptr;
01438 dst = tmp;
01439 for(j=len;j>0;j--) {
01440 *dst++ = ptr[0*len];
01441 *dst++ = ptr[1*len];
01442 *dst++ = ptr[2*len];
01443 ptr++;
01444 }
01445 ptr+=2*len;
01446 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01447 }
01448 }
01449
01450 #define ISQRT2 FIXR(0.70710678118654752440)
01451
01452 static void compute_stereo(MPADecodeContext *s,
01453 GranuleDef *g0, GranuleDef *g1)
01454 {
01455 int i, j, k, l;
01456 int sf_max, sf, len, non_zero_found;
01457 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01458 int non_zero_found_short[3];
01459
01460
01461 if (s->mode_ext & MODE_EXT_I_STEREO) {
01462 if (!s->lsf) {
01463 is_tab = is_table;
01464 sf_max = 7;
01465 } else {
01466 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01467 sf_max = 16;
01468 }
01469
01470 tab0 = g0->sb_hybrid + 576;
01471 tab1 = g1->sb_hybrid + 576;
01472
01473 non_zero_found_short[0] = 0;
01474 non_zero_found_short[1] = 0;
01475 non_zero_found_short[2] = 0;
01476 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01477 for(i = 12;i >= g1->short_start;i--) {
01478
01479 if (i != 11)
01480 k -= 3;
01481 len = band_size_short[s->sample_rate_index][i];
01482 for(l=2;l>=0;l--) {
01483 tab0 -= len;
01484 tab1 -= len;
01485 if (!non_zero_found_short[l]) {
01486
01487 for(j=0;j<len;j++) {
01488 if (tab1[j] != 0) {
01489 non_zero_found_short[l] = 1;
01490 goto found1;
01491 }
01492 }
01493 sf = g1->scale_factors[k + l];
01494 if (sf >= sf_max)
01495 goto found1;
01496
01497 v1 = is_tab[0][sf];
01498 v2 = is_tab[1][sf];
01499 for(j=0;j<len;j++) {
01500 tmp0 = tab0[j];
01501 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01502 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01503 }
01504 } else {
01505 found1:
01506 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01507
01508
01509 for(j=0;j<len;j++) {
01510 tmp0 = tab0[j];
01511 tmp1 = tab1[j];
01512 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01513 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01514 }
01515 }
01516 }
01517 }
01518 }
01519
01520 non_zero_found = non_zero_found_short[0] |
01521 non_zero_found_short[1] |
01522 non_zero_found_short[2];
01523
01524 for(i = g1->long_end - 1;i >= 0;i--) {
01525 len = band_size_long[s->sample_rate_index][i];
01526 tab0 -= len;
01527 tab1 -= len;
01528
01529 if (!non_zero_found) {
01530 for(j=0;j<len;j++) {
01531 if (tab1[j] != 0) {
01532 non_zero_found = 1;
01533 goto found2;
01534 }
01535 }
01536
01537 k = (i == 21) ? 20 : i;
01538 sf = g1->scale_factors[k];
01539 if (sf >= sf_max)
01540 goto found2;
01541 v1 = is_tab[0][sf];
01542 v2 = is_tab[1][sf];
01543 for(j=0;j<len;j++) {
01544 tmp0 = tab0[j];
01545 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01546 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01547 }
01548 } else {
01549 found2:
01550 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01551
01552
01553 for(j=0;j<len;j++) {
01554 tmp0 = tab0[j];
01555 tmp1 = tab1[j];
01556 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01557 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01558 }
01559 }
01560 }
01561 }
01562 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01563
01564
01565
01566 tab0 = g0->sb_hybrid;
01567 tab1 = g1->sb_hybrid;
01568 for(i=0;i<576;i++) {
01569 tmp0 = tab0[i];
01570 tmp1 = tab1[i];
01571 tab0[i] = tmp0 + tmp1;
01572 tab1[i] = tmp0 - tmp1;
01573 }
01574 }
01575 }
01576
01577 #if !CONFIG_FLOAT
01578 static void compute_antialias_integer(MPADecodeContext *s,
01579 GranuleDef *g)
01580 {
01581 int32_t *ptr, *csa;
01582 int n, i;
01583
01584
01585 if (g->block_type == 2) {
01586 if (!g->switch_point)
01587 return;
01588
01589 n = 1;
01590 } else {
01591 n = SBLIMIT - 1;
01592 }
01593
01594 ptr = g->sb_hybrid + 18;
01595 for(i = n;i > 0;i--) {
01596 int tmp0, tmp1, tmp2;
01597 csa = &csa_table[0][0];
01598 #define INT_AA(j) \
01599 tmp0 = ptr[-1-j];\
01600 tmp1 = ptr[ j];\
01601 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
01602 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
01603 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
01604
01605 INT_AA(0)
01606 INT_AA(1)
01607 INT_AA(2)
01608 INT_AA(3)
01609 INT_AA(4)
01610 INT_AA(5)
01611 INT_AA(6)
01612 INT_AA(7)
01613
01614 ptr += 18;
01615 }
01616 }
01617 #endif
01618
01619 static void compute_imdct(MPADecodeContext *s,
01620 GranuleDef *g,
01621 INTFLOAT *sb_samples,
01622 INTFLOAT *mdct_buf)
01623 {
01624 INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
01625 INTFLOAT out2[12];
01626 int i, j, mdct_long_end, sblimit;
01627
01628
01629 ptr = g->sb_hybrid + 576;
01630 ptr1 = g->sb_hybrid + 2 * 18;
01631 while (ptr >= ptr1) {
01632 int32_t *p;
01633 ptr -= 6;
01634 p= (int32_t*)ptr;
01635 if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01636 break;
01637 }
01638 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01639
01640 if (g->block_type == 2) {
01641
01642 if (g->switch_point)
01643 mdct_long_end = 2;
01644 else
01645 mdct_long_end = 0;
01646 } else {
01647 mdct_long_end = sblimit;
01648 }
01649
01650 buf = mdct_buf;
01651 ptr = g->sb_hybrid;
01652 for(j=0;j<mdct_long_end;j++) {
01653
01654 out_ptr = sb_samples + j;
01655
01656 if (g->switch_point && j < 2)
01657 win1 = mdct_win[0];
01658 else
01659 win1 = mdct_win[g->block_type];
01660
01661 win = win1 + ((4 * 36) & -(j & 1));
01662 imdct36(out_ptr, buf, ptr, win);
01663 out_ptr += 18*SBLIMIT;
01664 ptr += 18;
01665 buf += 18;
01666 }
01667 for(j=mdct_long_end;j<sblimit;j++) {
01668
01669 win = mdct_win[2] + ((4 * 36) & -(j & 1));
01670 out_ptr = sb_samples + j;
01671
01672 for(i=0; i<6; i++){
01673 *out_ptr = buf[i];
01674 out_ptr += SBLIMIT;
01675 }
01676 imdct12(out2, ptr + 0);
01677 for(i=0;i<6;i++) {
01678 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
01679 buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
01680 out_ptr += SBLIMIT;
01681 }
01682 imdct12(out2, ptr + 1);
01683 for(i=0;i<6;i++) {
01684 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
01685 buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
01686 out_ptr += SBLIMIT;
01687 }
01688 imdct12(out2, ptr + 2);
01689 for(i=0;i<6;i++) {
01690 buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
01691 buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
01692 buf[i + 6*2] = 0;
01693 }
01694 ptr += 18;
01695 buf += 18;
01696 }
01697
01698 for(j=sblimit;j<SBLIMIT;j++) {
01699
01700 out_ptr = sb_samples + j;
01701 for(i=0;i<18;i++) {
01702 *out_ptr = buf[i];
01703 buf[i] = 0;
01704 out_ptr += SBLIMIT;
01705 }
01706 buf += 18;
01707 }
01708 }
01709
01710
01711 static int mp_decode_layer3(MPADecodeContext *s)
01712 {
01713 int nb_granules, main_data_begin, private_bits;
01714 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01715 GranuleDef *g;
01716 int16_t exponents[576];
01717
01718
01719 if (s->lsf) {
01720 main_data_begin = get_bits(&s->gb, 8);
01721 private_bits = get_bits(&s->gb, s->nb_channels);
01722 nb_granules = 1;
01723 } else {
01724 main_data_begin = get_bits(&s->gb, 9);
01725 if (s->nb_channels == 2)
01726 private_bits = get_bits(&s->gb, 3);
01727 else
01728 private_bits = get_bits(&s->gb, 5);
01729 nb_granules = 2;
01730 for(ch=0;ch<s->nb_channels;ch++) {
01731 s->granules[ch][0].scfsi = 0;
01732 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01733 }
01734 }
01735
01736 for(gr=0;gr<nb_granules;gr++) {
01737 for(ch=0;ch<s->nb_channels;ch++) {
01738 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01739 g = &s->granules[ch][gr];
01740 g->part2_3_length = get_bits(&s->gb, 12);
01741 g->big_values = get_bits(&s->gb, 9);
01742 if(g->big_values > 288){
01743 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01744 return -1;
01745 }
01746
01747 g->global_gain = get_bits(&s->gb, 8);
01748
01749
01750 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01751 MODE_EXT_MS_STEREO)
01752 g->global_gain -= 2;
01753 if (s->lsf)
01754 g->scalefac_compress = get_bits(&s->gb, 9);
01755 else
01756 g->scalefac_compress = get_bits(&s->gb, 4);
01757 blocksplit_flag = get_bits1(&s->gb);
01758 if (blocksplit_flag) {
01759 g->block_type = get_bits(&s->gb, 2);
01760 if (g->block_type == 0){
01761 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01762 return -1;
01763 }
01764 g->switch_point = get_bits1(&s->gb);
01765 for(i=0;i<2;i++)
01766 g->table_select[i] = get_bits(&s->gb, 5);
01767 for(i=0;i<3;i++)
01768 g->subblock_gain[i] = get_bits(&s->gb, 3);
01769 ff_init_short_region(s, g);
01770 } else {
01771 int region_address1, region_address2;
01772 g->block_type = 0;
01773 g->switch_point = 0;
01774 for(i=0;i<3;i++)
01775 g->table_select[i] = get_bits(&s->gb, 5);
01776
01777 region_address1 = get_bits(&s->gb, 4);
01778 region_address2 = get_bits(&s->gb, 3);
01779 av_dlog(s->avctx, "region1=%d region2=%d\n",
01780 region_address1, region_address2);
01781 ff_init_long_region(s, g, region_address1, region_address2);
01782 }
01783 ff_region_offset2size(g);
01784 ff_compute_band_indexes(s, g);
01785
01786 g->preflag = 0;
01787 if (!s->lsf)
01788 g->preflag = get_bits1(&s->gb);
01789 g->scalefac_scale = get_bits1(&s->gb);
01790 g->count1table_select = get_bits1(&s->gb);
01791 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01792 g->block_type, g->switch_point);
01793 }
01794 }
01795
01796 if (!s->adu_mode) {
01797 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01798 assert((get_bits_count(&s->gb) & 7) == 0);
01799
01800 av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01801
01802
01803 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
01804 s->in_gb= s->gb;
01805 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01806 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
01807 }
01808
01809 for(gr=0;gr<nb_granules;gr++) {
01810 for(ch=0;ch<s->nb_channels;ch++) {
01811 g = &s->granules[ch][gr];
01812 if(get_bits_count(&s->gb)<0){
01813 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
01814 main_data_begin, s->last_buf_size, gr);
01815 skip_bits_long(&s->gb, g->part2_3_length);
01816 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01817 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
01818 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
01819 s->gb= s->in_gb;
01820 s->in_gb.buffer=NULL;
01821 }
01822 continue;
01823 }
01824
01825 bits_pos = get_bits_count(&s->gb);
01826
01827 if (!s->lsf) {
01828 uint8_t *sc;
01829 int slen, slen1, slen2;
01830
01831
01832 slen1 = slen_table[0][g->scalefac_compress];
01833 slen2 = slen_table[1][g->scalefac_compress];
01834 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01835 if (g->block_type == 2) {
01836 n = g->switch_point ? 17 : 18;
01837 j = 0;
01838 if(slen1){
01839 for(i=0;i<n;i++)
01840 g->scale_factors[j++] = get_bits(&s->gb, slen1);
01841 }else{
01842 for(i=0;i<n;i++)
01843 g->scale_factors[j++] = 0;
01844 }
01845 if(slen2){
01846 for(i=0;i<18;i++)
01847 g->scale_factors[j++] = get_bits(&s->gb, slen2);
01848 for(i=0;i<3;i++)
01849 g->scale_factors[j++] = 0;
01850 }else{
01851 for(i=0;i<21;i++)
01852 g->scale_factors[j++] = 0;
01853 }
01854 } else {
01855 sc = s->granules[ch][0].scale_factors;
01856 j = 0;
01857 for(k=0;k<4;k++) {
01858 n = (k == 0 ? 6 : 5);
01859 if ((g->scfsi & (0x8 >> k)) == 0) {
01860 slen = (k < 2) ? slen1 : slen2;
01861 if(slen){
01862 for(i=0;i<n;i++)
01863 g->scale_factors[j++] = get_bits(&s->gb, slen);
01864 }else{
01865 for(i=0;i<n;i++)
01866 g->scale_factors[j++] = 0;
01867 }
01868 } else {
01869
01870 for(i=0;i<n;i++) {
01871 g->scale_factors[j] = sc[j];
01872 j++;
01873 }
01874 }
01875 }
01876 g->scale_factors[j++] = 0;
01877 }
01878 } else {
01879 int tindex, tindex2, slen[4], sl, sf;
01880
01881
01882 if (g->block_type == 2) {
01883 tindex = g->switch_point ? 2 : 1;
01884 } else {
01885 tindex = 0;
01886 }
01887 sf = g->scalefac_compress;
01888 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01889
01890 sf >>= 1;
01891 if (sf < 180) {
01892 lsf_sf_expand(slen, sf, 6, 6, 0);
01893 tindex2 = 3;
01894 } else if (sf < 244) {
01895 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01896 tindex2 = 4;
01897 } else {
01898 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01899 tindex2 = 5;
01900 }
01901 } else {
01902
01903 if (sf < 400) {
01904 lsf_sf_expand(slen, sf, 5, 4, 4);
01905 tindex2 = 0;
01906 } else if (sf < 500) {
01907 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01908 tindex2 = 1;
01909 } else {
01910 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01911 tindex2 = 2;
01912 g->preflag = 1;
01913 }
01914 }
01915
01916 j = 0;
01917 for(k=0;k<4;k++) {
01918 n = lsf_nsf_table[tindex2][tindex][k];
01919 sl = slen[k];
01920 if(sl){
01921 for(i=0;i<n;i++)
01922 g->scale_factors[j++] = get_bits(&s->gb, sl);
01923 }else{
01924 for(i=0;i<n;i++)
01925 g->scale_factors[j++] = 0;
01926 }
01927 }
01928
01929 for(;j<40;j++)
01930 g->scale_factors[j] = 0;
01931 }
01932
01933 exponents_from_scale_factors(s, g, exponents);
01934
01935
01936 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01937 }
01938
01939 if (s->nb_channels == 2)
01940 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01941
01942 for(ch=0;ch<s->nb_channels;ch++) {
01943 g = &s->granules[ch][gr];
01944
01945 reorder_block(s, g);
01946 compute_antialias(s, g);
01947 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01948 }
01949 }
01950 if(get_bits_count(&s->gb)<0)
01951 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01952 return nb_granules * 18;
01953 }
01954
01955 static int mp_decode_frame(MPADecodeContext *s,
01956 OUT_INT *samples, const uint8_t *buf, int buf_size)
01957 {
01958 int i, nb_frames, ch;
01959 OUT_INT *samples_ptr;
01960
01961 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
01962
01963
01964 if (s->error_protection)
01965 skip_bits(&s->gb, 16);
01966
01967 av_dlog(s->avctx, "frame %d:\n", s->frame_count);
01968 switch(s->layer) {
01969 case 1:
01970 s->avctx->frame_size = 384;
01971 nb_frames = mp_decode_layer1(s);
01972 break;
01973 case 2:
01974 s->avctx->frame_size = 1152;
01975 nb_frames = mp_decode_layer2(s);
01976 break;
01977 case 3:
01978 s->avctx->frame_size = s->lsf ? 576 : 1152;
01979 default:
01980 nb_frames = mp_decode_layer3(s);
01981
01982 s->last_buf_size=0;
01983 if(s->in_gb.buffer){
01984 align_get_bits(&s->gb);
01985 i= get_bits_left(&s->gb)>>3;
01986 if(i >= 0 && i <= BACKSTEP_SIZE){
01987 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01988 s->last_buf_size=i;
01989 }else
01990 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01991 s->gb= s->in_gb;
01992 s->in_gb.buffer= NULL;
01993 }
01994
01995 align_get_bits(&s->gb);
01996 assert((get_bits_count(&s->gb) & 7) == 0);
01997 i= get_bits_left(&s->gb)>>3;
01998
01999 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
02000 if(i<0)
02001 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
02002 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
02003 }
02004 assert(i <= buf_size - HEADER_SIZE && i>= 0);
02005 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
02006 s->last_buf_size += i;
02007
02008 break;
02009 }
02010
02011
02012 for(ch=0;ch<s->nb_channels;ch++) {
02013 samples_ptr = samples + ch;
02014 for(i=0;i<nb_frames;i++) {
02015 RENAME(ff_mpa_synth_filter)(
02016 #if CONFIG_FLOAT
02017 s,
02018 #endif
02019 s->synth_buf[ch], &(s->synth_buf_offset[ch]),
02020 RENAME(ff_mpa_synth_window), &s->dither_state,
02021 samples_ptr, s->nb_channels,
02022 s->sb_samples[ch][i]);
02023 samples_ptr += 32 * s->nb_channels;
02024 }
02025 }
02026
02027 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
02028 }
02029
02030 static int decode_frame(AVCodecContext * avctx,
02031 void *data, int *data_size,
02032 AVPacket *avpkt)
02033 {
02034 const uint8_t *buf = avpkt->data;
02035 int buf_size = avpkt->size;
02036 MPADecodeContext *s = avctx->priv_data;
02037 uint32_t header;
02038 int out_size;
02039 OUT_INT *out_samples = data;
02040
02041 if(buf_size < HEADER_SIZE)
02042 return -1;
02043
02044 header = AV_RB32(buf);
02045 if(ff_mpa_check_header(header) < 0){
02046 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
02047 return -1;
02048 }
02049
02050 if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
02051
02052 s->frame_size = -1;
02053 return -1;
02054 }
02055
02056 avctx->channels = s->nb_channels;
02057 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
02058 if (!avctx->bit_rate)
02059 avctx->bit_rate = s->bit_rate;
02060 avctx->sub_id = s->layer;
02061
02062 if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
02063 return -1;
02064 *data_size = 0;
02065
02066 if(s->frame_size<=0 || s->frame_size > buf_size){
02067 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
02068 return -1;
02069 }else if(s->frame_size < buf_size){
02070 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
02071 buf_size= s->frame_size;
02072 }
02073
02074 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
02075 if(out_size>=0){
02076 *data_size = out_size;
02077 avctx->sample_rate = s->sample_rate;
02078
02079 }else
02080 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n");
02081 s->frame_size = 0;
02082 return buf_size;
02083 }
02084
02085 static void flush(AVCodecContext *avctx){
02086 MPADecodeContext *s = avctx->priv_data;
02087 memset(s->synth_buf, 0, sizeof(s->synth_buf));
02088 s->last_buf_size= 0;
02089 }
02090
02091 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
02092 static int decode_frame_adu(AVCodecContext * avctx,
02093 void *data, int *data_size,
02094 AVPacket *avpkt)
02095 {
02096 const uint8_t *buf = avpkt->data;
02097 int buf_size = avpkt->size;
02098 MPADecodeContext *s = avctx->priv_data;
02099 uint32_t header;
02100 int len, out_size;
02101 OUT_INT *out_samples = data;
02102
02103 len = buf_size;
02104
02105
02106 if (buf_size < HEADER_SIZE) {
02107 *data_size = 0;
02108 return buf_size;
02109 }
02110
02111
02112 if (len > MPA_MAX_CODED_FRAME_SIZE)
02113 len = MPA_MAX_CODED_FRAME_SIZE;
02114
02115
02116 header = AV_RB32(buf) | 0xffe00000;
02117
02118 if (ff_mpa_check_header(header) < 0) {
02119 *data_size = 0;
02120 return buf_size;
02121 }
02122
02123 ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
02124
02125 avctx->sample_rate = s->sample_rate;
02126 avctx->channels = s->nb_channels;
02127 if (!avctx->bit_rate)
02128 avctx->bit_rate = s->bit_rate;
02129 avctx->sub_id = s->layer;
02130
02131 s->frame_size = len;
02132
02133 if (avctx->parse_only) {
02134 out_size = buf_size;
02135 } else {
02136 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
02137 }
02138
02139 *data_size = out_size;
02140 return buf_size;
02141 }
02142 #endif
02143
02144 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
02145
02149 typedef struct MP3On4DecodeContext {
02150 int frames;
02151 int syncword;
02152 const uint8_t *coff;
02153 MPADecodeContext *mp3decctx[5];
02154 } MP3On4DecodeContext;
02155
02156 #include "mpeg4audio.h"
02157
02158
02159 static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5};
02160
02161 static const uint8_t chan_offset[8][5] = {
02162 {0},
02163 {0},
02164 {0},
02165 {2,0},
02166 {2,0,3},
02167 {4,0,2},
02168 {4,0,2,5},
02169 {4,0,2,6,5},
02170 };
02171
02172
02173 static int decode_init_mp3on4(AVCodecContext * avctx)
02174 {
02175 MP3On4DecodeContext *s = avctx->priv_data;
02176 MPEG4AudioConfig cfg;
02177 int i;
02178
02179 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
02180 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
02181 return -1;
02182 }
02183
02184 ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
02185 if (!cfg.chan_config || cfg.chan_config > 7) {
02186 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
02187 return -1;
02188 }
02189 s->frames = mp3Frames[cfg.chan_config];
02190 s->coff = chan_offset[cfg.chan_config];
02191 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
02192
02193 if (cfg.sample_rate < 16000)
02194 s->syncword = 0xffe00000;
02195 else
02196 s->syncword = 0xfff00000;
02197
02198
02199
02200
02201
02202
02203
02204 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
02205
02206 avctx->priv_data = s->mp3decctx[0];
02207 decode_init(avctx);
02208
02209 avctx->priv_data = s;
02210 s->mp3decctx[0]->adu_mode = 1;
02211
02212
02213
02214
02215 for (i = 1; i < s->frames; i++) {
02216 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
02217 s->mp3decctx[i]->adu_mode = 1;
02218 s->mp3decctx[i]->avctx = avctx;
02219 }
02220
02221 return 0;
02222 }
02223
02224
02225 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
02226 {
02227 MP3On4DecodeContext *s = avctx->priv_data;
02228 int i;
02229
02230 for (i = 0; i < s->frames; i++)
02231 av_free(s->mp3decctx[i]);
02232
02233 return 0;
02234 }
02235
02236
02237 static int decode_frame_mp3on4(AVCodecContext * avctx,
02238 void *data, int *data_size,
02239 AVPacket *avpkt)
02240 {
02241 const uint8_t *buf = avpkt->data;
02242 int buf_size = avpkt->size;
02243 MP3On4DecodeContext *s = avctx->priv_data;
02244 MPADecodeContext *m;
02245 int fsize, len = buf_size, out_size = 0;
02246 uint32_t header;
02247 OUT_INT *out_samples = data;
02248 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
02249 OUT_INT *outptr, *bp;
02250 int fr, j, n;
02251
02252 if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
02253 return -1;
02254
02255 *data_size = 0;
02256
02257 if (buf_size < HEADER_SIZE)
02258 return -1;
02259
02260
02261 outptr = s->frames == 1 ? out_samples : decoded_buf;
02262
02263 avctx->bit_rate = 0;
02264
02265 for (fr = 0; fr < s->frames; fr++) {
02266 fsize = AV_RB16(buf) >> 4;
02267 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
02268 m = s->mp3decctx[fr];
02269 assert (m != NULL);
02270
02271 header = (AV_RB32(buf) & 0x000fffff) | s->syncword;
02272
02273 if (ff_mpa_check_header(header) < 0)
02274 break;
02275
02276 ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
02277 out_size += mp_decode_frame(m, outptr, buf, fsize);
02278 buf += fsize;
02279 len -= fsize;
02280
02281 if(s->frames > 1) {
02282 n = m->avctx->frame_size*m->nb_channels;
02283
02284 bp = out_samples + s->coff[fr];
02285 if(m->nb_channels == 1) {
02286 for(j = 0; j < n; j++) {
02287 *bp = decoded_buf[j];
02288 bp += avctx->channels;
02289 }
02290 } else {
02291 for(j = 0; j < n; j++) {
02292 bp[0] = decoded_buf[j++];
02293 bp[1] = decoded_buf[j];
02294 bp += avctx->channels;
02295 }
02296 }
02297 }
02298 avctx->bit_rate += m->bit_rate;
02299 }
02300
02301
02302 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
02303
02304 *data_size = out_size;
02305 return buf_size;
02306 }
02307 #endif
02308
02309 #if !CONFIG_FLOAT
02310 #if CONFIG_MP1_DECODER
02311 AVCodec ff_mp1_decoder =
02312 {
02313 "mp1",
02314 AVMEDIA_TYPE_AUDIO,
02315 CODEC_ID_MP1,
02316 sizeof(MPADecodeContext),
02317 decode_init,
02318 NULL,
02319 NULL,
02320 decode_frame,
02321 CODEC_CAP_PARSE_ONLY,
02322 .flush= flush,
02323 .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
02324 };
02325 #endif
02326 #if CONFIG_MP2_DECODER
02327 AVCodec ff_mp2_decoder =
02328 {
02329 "mp2",
02330 AVMEDIA_TYPE_AUDIO,
02331 CODEC_ID_MP2,
02332 sizeof(MPADecodeContext),
02333 decode_init,
02334 NULL,
02335 NULL,
02336 decode_frame,
02337 CODEC_CAP_PARSE_ONLY,
02338 .flush= flush,
02339 .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02340 };
02341 #endif
02342 #if CONFIG_MP3_DECODER
02343 AVCodec ff_mp3_decoder =
02344 {
02345 "mp3",
02346 AVMEDIA_TYPE_AUDIO,
02347 CODEC_ID_MP3,
02348 sizeof(MPADecodeContext),
02349 decode_init,
02350 NULL,
02351 NULL,
02352 decode_frame,
02353 CODEC_CAP_PARSE_ONLY,
02354 .flush= flush,
02355 .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02356 };
02357 #endif
02358 #if CONFIG_MP3ADU_DECODER
02359 AVCodec ff_mp3adu_decoder =
02360 {
02361 "mp3adu",
02362 AVMEDIA_TYPE_AUDIO,
02363 CODEC_ID_MP3ADU,
02364 sizeof(MPADecodeContext),
02365 decode_init,
02366 NULL,
02367 NULL,
02368 decode_frame_adu,
02369 CODEC_CAP_PARSE_ONLY,
02370 .flush= flush,
02371 .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02372 };
02373 #endif
02374 #if CONFIG_MP3ON4_DECODER
02375 AVCodec ff_mp3on4_decoder =
02376 {
02377 "mp3on4",
02378 AVMEDIA_TYPE_AUDIO,
02379 CODEC_ID_MP3ON4,
02380 sizeof(MP3On4DecodeContext),
02381 decode_init_mp3on4,
02382 NULL,
02383 decode_close_mp3on4,
02384 decode_frame_mp3on4,
02385 .flush= flush,
02386 .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
02387 };
02388 #endif
02389 #endif