• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/dnxhdenc.c

Go to the documentation of this file.
00001 /*
00002  * VC3/DNxHD encoder
00003  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
00004  * Copyright (c) 2011 MirriAd Ltd
00005  *
00006  * VC-3 encoder funded by the British Broadcasting Corporation
00007  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
00008  *
00009  * This file is part of FFmpeg.
00010  *
00011  * FFmpeg is free software; you can redistribute it and/or
00012  * modify it under the terms of the GNU Lesser General Public
00013  * License as published by the Free Software Foundation; either
00014  * version 2.1 of the License, or (at your option) any later version.
00015  *
00016  * FFmpeg is distributed in the hope that it will be useful,
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00019  * Lesser General Public License for more details.
00020  *
00021  * You should have received a copy of the GNU Lesser General Public
00022  * License along with FFmpeg; if not, write to the Free Software
00023  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00024  */
00025 
00026 //#define DEBUG
00027 #define RC_VARIANCE 1 // use variance or ssd for fast rc
00028 
00029 #include "libavutil/opt.h"
00030 #include "avcodec.h"
00031 #include "dsputil.h"
00032 #include "mpegvideo.h"
00033 #include "mpegvideo_common.h"
00034 #include "dnxhdenc.h"
00035 
00036 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
00037 #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
00038 
00039 static const AVOption options[]={
00040     {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
00041 {NULL}
00042 };
00043 static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
00044 
00045 #define LAMBDA_FRAC_BITS 10
00046 
00047 static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
00048 {
00049     int i;
00050     for (i = 0; i < 4; i++) {
00051         block[0] = pixels[0]; block[1] = pixels[1];
00052         block[2] = pixels[2]; block[3] = pixels[3];
00053         block[4] = pixels[4]; block[5] = pixels[5];
00054         block[6] = pixels[6]; block[7] = pixels[7];
00055         pixels += line_size;
00056         block += 8;
00057     }
00058     memcpy(block,      block -  8, sizeof(*block) * 8);
00059     memcpy(block +  8, block - 16, sizeof(*block) * 8);
00060     memcpy(block + 16, block - 24, sizeof(*block) * 8);
00061     memcpy(block + 24, block - 32, sizeof(*block) * 8);
00062 }
00063 
00064 static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
00065 {
00066     int i;
00067 
00068     block += 32;
00069 
00070     for (i = 0; i < 4; i++) {
00071         memcpy(block + i     * 8, pixels + i * line_size, 8 * sizeof(*block));
00072         memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
00073     }
00074 }
00075 
00076 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
00077                                     int n, int qscale, int *overflow)
00078 {
00079     const uint8_t *scantable= ctx->intra_scantable.scantable;
00080     const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
00081     int last_non_zero = 0;
00082     int i;
00083 
00084     ctx->dsp.fdct(block);
00085 
00086     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
00087     block[0] = (block[0] + 2) >> 2;
00088 
00089     for (i = 1; i < 64; ++i) {
00090         int j = scantable[i];
00091         int sign = block[j] >> 31;
00092         int level = (block[j] ^ sign) - sign;
00093         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
00094         block[j] = (level ^ sign) - sign;
00095         if (level)
00096             last_non_zero = i;
00097     }
00098 
00099     return last_non_zero;
00100 }
00101 
00102 static int dnxhd_init_vlc(DNXHDEncContext *ctx)
00103 {
00104     int i, j, level, run;
00105     int max_level = 1<<(ctx->cid_table->bit_depth+2);
00106 
00107     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
00108     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,  max_level*4*sizeof(*ctx->vlc_bits) , fail);
00109     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2,                                fail);
00110     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,  63,                                  fail);
00111 
00112     ctx->vlc_codes += max_level*2;
00113     ctx->vlc_bits  += max_level*2;
00114     for (level = -max_level; level < max_level; level++) {
00115         for (run = 0; run < 2; run++) {
00116             int index = (level<<1)|run;
00117             int sign, offset = 0, alevel = level;
00118 
00119             MASK_ABS(sign, alevel);
00120             if (alevel > 64) {
00121                 offset = (alevel-1)>>6;
00122                 alevel -= offset<<6;
00123             }
00124             for (j = 0; j < 257; j++) {
00125                 if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
00126                     (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
00127                     (!run    || (ctx->cid_table->ac_flags[j] & 2) && run)) {
00128                     assert(!ctx->vlc_codes[index]);
00129                     if (alevel) {
00130                         ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
00131                         ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
00132                     } else {
00133                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
00134                         ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
00135                     }
00136                     break;
00137                 }
00138             }
00139             assert(!alevel || j < 257);
00140             if (offset) {
00141                 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
00142                 ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
00143             }
00144         }
00145     }
00146     for (i = 0; i < 62; i++) {
00147         int run = ctx->cid_table->run[i];
00148         assert(run < 63);
00149         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
00150         ctx->run_bits [run] = ctx->cid_table->run_bits[i];
00151     }
00152     return 0;
00153  fail:
00154     return -1;
00155 }
00156 
00157 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
00158 {
00159     // init first elem to 1 to avoid div by 0 in convert_matrix
00160     uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
00161     int qscale, i;
00162     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
00163     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
00164 
00165     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
00166     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
00167     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
00168     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
00169 
00170     if (ctx->cid_table->bit_depth == 8) {
00171         for (i = 1; i < 64; i++) {
00172             int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00173             weight_matrix[j] = ctx->cid_table->luma_weight[i];
00174         }
00175         ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
00176                           ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
00177         for (i = 1; i < 64; i++) {
00178             int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00179             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
00180         }
00181         ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
00182                           ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
00183 
00184         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
00185             for (i = 0; i < 64; i++) {
00186                 ctx->qmatrix_l  [qscale]   [i] <<= 2; ctx->qmatrix_c  [qscale]   [i] <<= 2;
00187                 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
00188                 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
00189             }
00190         }
00191     } else {
00192         // 10-bit
00193         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
00194             for (i = 1; i < 64; i++) {
00195                 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00196 
00197                 // The quantization formula from the VC-3 standard is:
00198                 // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
00199                 // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
00200                 // The s factor compensates scaling of DCT coefficients done by the DCT routines,
00201                 // and therefore is not present in standard.  It's 8 for 8-bit samples and 4 for 10-bit ones.
00202                 // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
00203                 // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
00204                 // For 10-bit samples, p / s == 2
00205                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
00206                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
00207             }
00208         }
00209     }
00210 
00211     ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
00212     ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
00213     ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
00214     ctx->m.q_intra_matrix          = ctx->qmatrix_l;
00215 
00216     return 0;
00217  fail:
00218     return -1;
00219 }
00220 
00221 static int dnxhd_init_rc(DNXHDEncContext *ctx)
00222 {
00223     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
00224     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
00225         FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
00226 
00227     ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
00228     ctx->qscale = 1;
00229     ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
00230     return 0;
00231  fail:
00232     return -1;
00233 }
00234 
00235 static int dnxhd_encode_init(AVCodecContext *avctx)
00236 {
00237     DNXHDEncContext *ctx = avctx->priv_data;
00238     int i, index, bit_depth;
00239 
00240     switch (avctx->pix_fmt) {
00241     case PIX_FMT_YUV422P:
00242         bit_depth = 8;
00243         break;
00244     case PIX_FMT_YUV422P10:
00245         bit_depth = 10;
00246         break;
00247     default:
00248         av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
00249         return -1;
00250     }
00251 
00252     ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
00253     if (!ctx->cid) {
00254         av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
00255         return -1;
00256     }
00257     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
00258 
00259     index = ff_dnxhd_get_cid_table(ctx->cid);
00260     ctx->cid_table = &ff_dnxhd_cid_table[index];
00261 
00262     ctx->m.avctx = avctx;
00263     ctx->m.mb_intra = 1;
00264     ctx->m.h263_aic = 1;
00265 
00266     avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
00267 
00268     dsputil_init(&ctx->m.dsp, avctx);
00269     ff_dct_common_init(&ctx->m);
00270     if (!ctx->m.dct_quantize)
00271         ctx->m.dct_quantize = dct_quantize_c;
00272 
00273     if (ctx->cid_table->bit_depth == 10) {
00274        ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
00275        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
00276        ctx->block_width_l2 = 4;
00277     } else {
00278        ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
00279        ctx->block_width_l2 = 3;
00280     }
00281 
00282 #if HAVE_MMX
00283     ff_dnxhd_init_mmx(ctx);
00284 #endif
00285 
00286     ctx->m.mb_height = (avctx->height + 15) / 16;
00287     ctx->m.mb_width  = (avctx->width  + 15) / 16;
00288 
00289     if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
00290         ctx->interlaced = 1;
00291         ctx->m.mb_height /= 2;
00292     }
00293 
00294     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
00295 
00296     if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
00297         ctx->m.intra_quant_bias = avctx->intra_quant_bias;
00298     if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
00299         return -1;
00300 
00301     // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
00302     if (ctx->nitris_compat)
00303         ctx->min_padding = 1600;
00304 
00305     if (dnxhd_init_vlc(ctx) < 0)
00306         return -1;
00307     if (dnxhd_init_rc(ctx) < 0)
00308         return -1;
00309 
00310     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
00311     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
00312     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,    ctx->m.mb_num   *sizeof(uint16_t), fail);
00313     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,  ctx->m.mb_num   *sizeof(uint8_t),  fail);
00314 
00315     ctx->frame.key_frame = 1;
00316     ctx->frame.pict_type = AV_PICTURE_TYPE_I;
00317     ctx->m.avctx->coded_frame = &ctx->frame;
00318 
00319     if (avctx->thread_count > MAX_THREADS) {
00320         av_log(avctx, AV_LOG_ERROR, "too many threads\n");
00321         return -1;
00322     }
00323 
00324     ctx->thread[0] = ctx;
00325     for (i = 1; i < avctx->thread_count; i++) {
00326         ctx->thread[i] =  av_malloc(sizeof(DNXHDEncContext));
00327         memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
00328     }
00329 
00330     return 0;
00331  fail: //for FF_ALLOCZ_OR_GOTO
00332     return -1;
00333 }
00334 
00335 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
00336 {
00337     DNXHDEncContext *ctx = avctx->priv_data;
00338     const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
00339 
00340     memset(buf, 0, 640);
00341 
00342     memcpy(buf, header_prefix, 5);
00343     buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
00344     buf[6] = 0x80; // crc flag off
00345     buf[7] = 0xa0; // reserved
00346     AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
00347     AV_WB16(buf + 0x1a, avctx->width);  // SPL
00348     AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
00349 
00350     buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
00351     buf[0x22] = 0x88 + (ctx->interlaced<<2);
00352     AV_WB32(buf + 0x28, ctx->cid); // CID
00353     buf[0x2c] = ctx->interlaced ? 0 : 0x80;
00354 
00355     buf[0x5f] = 0x01; // UDL
00356 
00357     buf[0x167] = 0x02; // reserved
00358     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
00359     buf[0x16d] = ctx->m.mb_height; // Ns
00360     buf[0x16f] = 0x10; // reserved
00361 
00362     ctx->msip = buf + 0x170;
00363     return 0;
00364 }
00365 
00366 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
00367 {
00368     int nbits;
00369     if (diff < 0) {
00370         nbits = av_log2_16bit(-2*diff);
00371         diff--;
00372     } else {
00373         nbits = av_log2_16bit(2*diff);
00374     }
00375     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
00376              (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
00377 }
00378 
00379 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
00380 {
00381     int last_non_zero = 0;
00382     int slevel, i, j;
00383 
00384     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
00385     ctx->m.last_dc[n] = block[0];
00386 
00387     for (i = 1; i <= last_index; i++) {
00388         j = ctx->m.intra_scantable.permutated[i];
00389         slevel = block[j];
00390         if (slevel) {
00391             int run_level = i - last_non_zero - 1;
00392             int rlevel = (slevel<<1)|!!run_level;
00393             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
00394             if (run_level)
00395                 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
00396             last_non_zero = i;
00397         }
00398     }
00399     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
00400 }
00401 
00402 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
00403 {
00404     const uint8_t *weight_matrix;
00405     int level;
00406     int i;
00407 
00408     weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
00409 
00410     for (i = 1; i <= last_index; i++) {
00411         int j = ctx->m.intra_scantable.permutated[i];
00412         level = block[j];
00413         if (level) {
00414             if (level < 0) {
00415                 level = (1-2*level) * qscale * weight_matrix[i];
00416                 if (ctx->cid_table->bit_depth == 10) {
00417                     if (weight_matrix[i] != 8)
00418                         level += 8;
00419                     level >>= 4;
00420                 } else {
00421                     if (weight_matrix[i] != 32)
00422                         level += 32;
00423                     level >>= 6;
00424                 }
00425                 level = -level;
00426             } else {
00427                 level = (2*level+1) * qscale * weight_matrix[i];
00428                 if (ctx->cid_table->bit_depth == 10) {
00429                     if (weight_matrix[i] != 8)
00430                         level += 8;
00431                     level >>= 4;
00432                 } else {
00433                     if (weight_matrix[i] != 32)
00434                         level += 32;
00435                     level >>= 6;
00436                 }
00437             }
00438             block[j] = level;
00439         }
00440     }
00441 }
00442 
00443 static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
00444 {
00445     int score = 0;
00446     int i;
00447     for (i = 0; i < 64; i++)
00448         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
00449     return score;
00450 }
00451 
00452 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
00453 {
00454     int last_non_zero = 0;
00455     int bits = 0;
00456     int i, j, level;
00457     for (i = 1; i <= last_index; i++) {
00458         j = ctx->m.intra_scantable.permutated[i];
00459         level = block[j];
00460         if (level) {
00461             int run_level = i - last_non_zero - 1;
00462             bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
00463             last_non_zero = i;
00464         }
00465     }
00466     return bits;
00467 }
00468 
00469 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
00470 {
00471     const int bs = ctx->block_width_l2;
00472     const int bw = 1 << bs;
00473     const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize)   + (mb_x << bs+1);
00474     const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
00475     const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
00476     DSPContext *dsp = &ctx->m.dsp;
00477 
00478     dsp->get_pixels(ctx->blocks[0], ptr_y,      ctx->m.linesize);
00479     dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
00480     dsp->get_pixels(ctx->blocks[2], ptr_u,      ctx->m.uvlinesize);
00481     dsp->get_pixels(ctx->blocks[3], ptr_v,      ctx->m.uvlinesize);
00482 
00483     if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
00484         if (ctx->interlaced) {
00485             ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
00486             ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
00487             ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00488             ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00489         } else {
00490             dsp->clear_block(ctx->blocks[4]);
00491             dsp->clear_block(ctx->blocks[5]);
00492             dsp->clear_block(ctx->blocks[6]);
00493             dsp->clear_block(ctx->blocks[7]);
00494         }
00495     } else {
00496         dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
00497         dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
00498         dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00499         dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00500     }
00501 }
00502 
00503 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
00504 {
00505     const static uint8_t component[8]={0,0,1,2,0,0,1,2};
00506     return component[i];
00507 }
00508 
00509 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00510 {
00511     DNXHDEncContext *ctx = avctx->priv_data;
00512     int mb_y = jobnr, mb_x;
00513     int qscale = ctx->qscale;
00514     LOCAL_ALIGNED_16(DCTELEM, block, [64]);
00515     ctx = ctx->thread[threadnr];
00516 
00517     ctx->m.last_dc[0] =
00518     ctx->m.last_dc[1] =
00519     ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
00520 
00521     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00522         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00523         int ssd     = 0;
00524         int ac_bits = 0;
00525         int dc_bits = 0;
00526         int i;
00527 
00528         dnxhd_get_blocks(ctx, mb_x, mb_y);
00529 
00530         for (i = 0; i < 8; i++) {
00531             DCTELEM *src_block = ctx->blocks[i];
00532             int overflow, nbits, diff, last_index;
00533             int n = dnxhd_switch_matrix(ctx, i);
00534 
00535             memcpy(block, src_block, 64*sizeof(*block));
00536             last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
00537             ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
00538 
00539             diff = block[0] - ctx->m.last_dc[n];
00540             if (diff < 0) nbits = av_log2_16bit(-2*diff);
00541             else          nbits = av_log2_16bit( 2*diff);
00542 
00543             assert(nbits < ctx->cid_table->bit_depth + 4);
00544             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
00545 
00546             ctx->m.last_dc[n] = block[0];
00547 
00548             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
00549                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
00550                 ctx->m.dsp.idct(block);
00551                 ssd += dnxhd_ssd_block(block, src_block);
00552             }
00553         }
00554         ctx->mb_rc[qscale][mb].ssd = ssd;
00555         ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
00556     }
00557     return 0;
00558 }
00559 
00560 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00561 {
00562     DNXHDEncContext *ctx = avctx->priv_data;
00563     int mb_y = jobnr, mb_x;
00564     ctx = ctx->thread[threadnr];
00565     init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
00566 
00567     ctx->m.last_dc[0] =
00568     ctx->m.last_dc[1] =
00569     ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
00570     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00571         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00572         int qscale = ctx->mb_qscale[mb];
00573         int i;
00574 
00575         put_bits(&ctx->m.pb, 12, qscale<<1);
00576 
00577         dnxhd_get_blocks(ctx, mb_x, mb_y);
00578 
00579         for (i = 0; i < 8; i++) {
00580             DCTELEM *block = ctx->blocks[i];
00581             int overflow, n = dnxhd_switch_matrix(ctx, i);
00582             int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
00583             //START_TIMER;
00584             dnxhd_encode_block(ctx, block, last_index, n);
00585             //STOP_TIMER("encode_block");
00586         }
00587     }
00588     if (put_bits_count(&ctx->m.pb)&31)
00589         put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
00590     flush_put_bits(&ctx->m.pb);
00591     return 0;
00592 }
00593 
00594 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
00595 {
00596     int mb_y, mb_x;
00597     int offset = 0;
00598     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
00599         int thread_size;
00600         ctx->slice_offs[mb_y] = offset;
00601         ctx->slice_size[mb_y] = 0;
00602         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00603             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00604             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
00605         }
00606         ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
00607         ctx->slice_size[mb_y] >>= 3;
00608         thread_size = ctx->slice_size[mb_y];
00609         offset += thread_size;
00610     }
00611 }
00612 
00613 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00614 {
00615     DNXHDEncContext *ctx = avctx->priv_data;
00616     int mb_y = jobnr, mb_x;
00617     ctx = ctx->thread[threadnr];
00618     if (ctx->cid_table->bit_depth == 8) {
00619         uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
00620         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
00621             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
00622             int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
00623             int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
00624             ctx->mb_cmp[mb].value = varc;
00625             ctx->mb_cmp[mb].mb = mb;
00626         }
00627     } else { // 10-bit
00628         int const linesize = ctx->m.linesize >> 1;
00629         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
00630             uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
00631             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
00632             int sum = 0;
00633             int sqsum = 0;
00634             int mean, sqmean;
00635             int i, j;
00636             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
00637             for (i = 0; i < 16; ++i) {
00638                 for (j = 0; j < 16; ++j) {
00639                     // Turn 16-bit pixels into 10-bit ones.
00640                     int const sample = (unsigned)pix[j] >> 6;
00641                     sum += sample;
00642                     sqsum += sample * sample;
00643                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
00644                 }
00645                 pix += linesize;
00646             }
00647             mean = sum >> 8; // 16*16 == 2^8
00648             sqmean = sqsum >> 8;
00649             ctx->mb_cmp[mb].value = sqmean - mean * mean;
00650             ctx->mb_cmp[mb].mb = mb;
00651         }
00652     }
00653     return 0;
00654 }
00655 
00656 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
00657 {
00658     int lambda, up_step, down_step;
00659     int last_lower = INT_MAX, last_higher = 0;
00660     int x, y, q;
00661 
00662     for (q = 1; q < avctx->qmax; q++) {
00663         ctx->qscale = q;
00664         avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
00665     }
00666     up_step = down_step = 2<<LAMBDA_FRAC_BITS;
00667     lambda = ctx->lambda;
00668 
00669     for (;;) {
00670         int bits = 0;
00671         int end = 0;
00672         if (lambda == last_higher) {
00673             lambda++;
00674             end = 1; // need to set final qscales/bits
00675         }
00676         for (y = 0; y < ctx->m.mb_height; y++) {
00677             for (x = 0; x < ctx->m.mb_width; x++) {
00678                 unsigned min = UINT_MAX;
00679                 int qscale = 1;
00680                 int mb = y*ctx->m.mb_width+x;
00681                 for (q = 1; q < avctx->qmax; q++) {
00682                     unsigned score = ctx->mb_rc[q][mb].bits*lambda+
00683                         ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
00684                     if (score < min) {
00685                         min = score;
00686                         qscale = q;
00687                     }
00688                 }
00689                 bits += ctx->mb_rc[qscale][mb].bits;
00690                 ctx->mb_qscale[mb] = qscale;
00691                 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
00692             }
00693             bits = (bits+31)&~31; // padding
00694             if (bits > ctx->frame_bits)
00695                 break;
00696         }
00697         //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
00698         //        lambda, last_higher, last_lower, bits, ctx->frame_bits);
00699         if (end) {
00700             if (bits > ctx->frame_bits)
00701                 return -1;
00702             break;
00703         }
00704         if (bits < ctx->frame_bits) {
00705             last_lower = FFMIN(lambda, last_lower);
00706             if (last_higher != 0)
00707                 lambda = (lambda+last_higher)>>1;
00708             else
00709                 lambda -= down_step;
00710             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
00711             up_step = 1<<LAMBDA_FRAC_BITS;
00712             lambda = FFMAX(1, lambda);
00713             if (lambda == last_lower)
00714                 break;
00715         } else {
00716             last_higher = FFMAX(lambda, last_higher);
00717             if (last_lower != INT_MAX)
00718                 lambda = (lambda+last_lower)>>1;
00719             else if ((int64_t)lambda + up_step > INT_MAX)
00720                 return -1;
00721             else
00722                 lambda += up_step;
00723             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
00724             down_step = 1<<LAMBDA_FRAC_BITS;
00725         }
00726     }
00727     //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
00728     ctx->lambda = lambda;
00729     return 0;
00730 }
00731 
00732 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
00733 {
00734     int bits = 0;
00735     int up_step = 1;
00736     int down_step = 1;
00737     int last_higher = 0;
00738     int last_lower = INT_MAX;
00739     int qscale;
00740     int x, y;
00741 
00742     qscale = ctx->qscale;
00743     for (;;) {
00744         bits = 0;
00745         ctx->qscale = qscale;
00746         // XXX avoid recalculating bits
00747         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
00748         for (y = 0; y < ctx->m.mb_height; y++) {
00749             for (x = 0; x < ctx->m.mb_width; x++)
00750                 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
00751             bits = (bits+31)&~31; // padding
00752             if (bits > ctx->frame_bits)
00753                 break;
00754         }
00755         //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
00756         //        ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
00757         if (bits < ctx->frame_bits) {
00758             if (qscale == 1)
00759                 return 1;
00760             if (last_higher == qscale - 1) {
00761                 qscale = last_higher;
00762                 break;
00763             }
00764             last_lower = FFMIN(qscale, last_lower);
00765             if (last_higher != 0)
00766                 qscale = (qscale+last_higher)>>1;
00767             else
00768                 qscale -= down_step++;
00769             if (qscale < 1)
00770                 qscale = 1;
00771             up_step = 1;
00772         } else {
00773             if (last_lower == qscale + 1)
00774                 break;
00775             last_higher = FFMAX(qscale, last_higher);
00776             if (last_lower != INT_MAX)
00777                 qscale = (qscale+last_lower)>>1;
00778             else
00779                 qscale += up_step++;
00780             down_step = 1;
00781             if (qscale >= ctx->m.avctx->qmax)
00782                 return -1;
00783         }
00784     }
00785     //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
00786     ctx->qscale = qscale;
00787     return 0;
00788 }
00789 
00790 #define BUCKET_BITS 8
00791 #define RADIX_PASSES 4
00792 #define NBUCKETS (1 << BUCKET_BITS)
00793 
00794 static inline int get_bucket(int value, int shift)
00795 {
00796     value >>= shift;
00797     value &= NBUCKETS - 1;
00798     return NBUCKETS - 1 - value;
00799 }
00800 
00801 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
00802 {
00803     int i, j;
00804     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
00805     for (i = 0; i < size; i++) {
00806         int v = data[i].value;
00807         for (j = 0; j < RADIX_PASSES; j++) {
00808             buckets[j][get_bucket(v, 0)]++;
00809             v >>= BUCKET_BITS;
00810         }
00811         assert(!v);
00812     }
00813     for (j = 0; j < RADIX_PASSES; j++) {
00814         int offset = size;
00815         for (i = NBUCKETS - 1; i >= 0; i--)
00816             buckets[j][i] = offset -= buckets[j][i];
00817         assert(!buckets[j][0]);
00818     }
00819 }
00820 
00821 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
00822 {
00823     int shift = pass * BUCKET_BITS;
00824     int i;
00825     for (i = 0; i < size; i++) {
00826         int v = get_bucket(data[i].value, shift);
00827         int pos = buckets[v]++;
00828         dst[pos] = data[i];
00829     }
00830 }
00831 
00832 static void radix_sort(RCCMPEntry *data, int size)
00833 {
00834     int buckets[RADIX_PASSES][NBUCKETS];
00835     RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
00836     radix_count(data, size, buckets);
00837     radix_sort_pass(tmp, data, size, buckets[0], 0);
00838     radix_sort_pass(data, tmp, size, buckets[1], 1);
00839     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
00840         radix_sort_pass(tmp, data, size, buckets[2], 2);
00841         radix_sort_pass(data, tmp, size, buckets[3], 3);
00842     }
00843     av_free(tmp);
00844 }
00845 
00846 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
00847 {
00848     int max_bits = 0;
00849     int ret, x, y;
00850     if ((ret = dnxhd_find_qscale(ctx)) < 0)
00851         return -1;
00852     for (y = 0; y < ctx->m.mb_height; y++) {
00853         for (x = 0; x < ctx->m.mb_width; x++) {
00854             int mb = y*ctx->m.mb_width+x;
00855             int delta_bits;
00856             ctx->mb_qscale[mb] = ctx->qscale;
00857             ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
00858             max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
00859             if (!RC_VARIANCE) {
00860                 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
00861                 ctx->mb_cmp[mb].mb = mb;
00862                 ctx->mb_cmp[mb].value = delta_bits ?
00863                     ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
00864                     : INT_MIN; //avoid increasing qscale
00865             }
00866         }
00867         max_bits += 31; //worst padding
00868     }
00869     if (!ret) {
00870         if (RC_VARIANCE)
00871             avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
00872         radix_sort(ctx->mb_cmp, ctx->m.mb_num);
00873         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
00874             int mb = ctx->mb_cmp[x].mb;
00875             max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
00876             ctx->mb_qscale[mb] = ctx->qscale+1;
00877             ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
00878         }
00879     }
00880     return 0;
00881 }
00882 
00883 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
00884 {
00885     int i;
00886 
00887     for (i = 0; i < 3; i++) {
00888         ctx->frame.data[i]     = frame->data[i];
00889         ctx->frame.linesize[i] = frame->linesize[i];
00890     }
00891 
00892     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
00893         ctx->thread[i]->m.linesize    = ctx->frame.linesize[0]<<ctx->interlaced;
00894         ctx->thread[i]->m.uvlinesize  = ctx->frame.linesize[1]<<ctx->interlaced;
00895         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
00896         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
00897     }
00898 
00899     ctx->frame.interlaced_frame = frame->interlaced_frame;
00900     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
00901 }
00902 
00903 static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
00904 {
00905     DNXHDEncContext *ctx = avctx->priv_data;
00906     int first_field = 1;
00907     int offset, i, ret;
00908 
00909     if (buf_size < ctx->cid_table->frame_size) {
00910         av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
00911         return -1;
00912     }
00913 
00914     dnxhd_load_picture(ctx, data);
00915 
00916  encode_coding_unit:
00917     for (i = 0; i < 3; i++) {
00918         ctx->src[i] = ctx->frame.data[i];
00919         if (ctx->interlaced && ctx->cur_field)
00920             ctx->src[i] += ctx->frame.linesize[i];
00921     }
00922 
00923     dnxhd_write_header(avctx, buf);
00924 
00925     if (avctx->mb_decision == FF_MB_DECISION_RD)
00926         ret = dnxhd_encode_rdo(avctx, ctx);
00927     else
00928         ret = dnxhd_encode_fast(avctx, ctx);
00929     if (ret < 0) {
00930         av_log(avctx, AV_LOG_ERROR,
00931                "picture could not fit ratecontrol constraints, increase qmax\n");
00932         return -1;
00933     }
00934 
00935     dnxhd_setup_threads_slices(ctx);
00936 
00937     offset = 0;
00938     for (i = 0; i < ctx->m.mb_height; i++) {
00939         AV_WB32(ctx->msip + i * 4, offset);
00940         offset += ctx->slice_size[i];
00941         assert(!(ctx->slice_size[i] & 3));
00942     }
00943 
00944     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
00945 
00946     assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
00947     memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
00948 
00949     AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
00950 
00951     if (ctx->interlaced && first_field) {
00952         first_field     = 0;
00953         ctx->cur_field ^= 1;
00954         buf      += ctx->cid_table->coding_unit_size;
00955         buf_size -= ctx->cid_table->coding_unit_size;
00956         goto encode_coding_unit;
00957     }
00958 
00959     ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
00960 
00961     return ctx->cid_table->frame_size;
00962 }
00963 
00964 static int dnxhd_encode_end(AVCodecContext *avctx)
00965 {
00966     DNXHDEncContext *ctx = avctx->priv_data;
00967     int max_level = 1<<(ctx->cid_table->bit_depth+2);
00968     int i;
00969 
00970     av_free(ctx->vlc_codes-max_level*2);
00971     av_free(ctx->vlc_bits -max_level*2);
00972     av_freep(&ctx->run_codes);
00973     av_freep(&ctx->run_bits);
00974 
00975     av_freep(&ctx->mb_bits);
00976     av_freep(&ctx->mb_qscale);
00977     av_freep(&ctx->mb_rc);
00978     av_freep(&ctx->mb_cmp);
00979     av_freep(&ctx->slice_size);
00980     av_freep(&ctx->slice_offs);
00981 
00982     av_freep(&ctx->qmatrix_c);
00983     av_freep(&ctx->qmatrix_l);
00984     av_freep(&ctx->qmatrix_c16);
00985     av_freep(&ctx->qmatrix_l16);
00986 
00987     for (i = 1; i < avctx->thread_count; i++)
00988         av_freep(&ctx->thread[i]);
00989 
00990     return 0;
00991 }
00992 
00993 AVCodec ff_dnxhd_encoder = {
00994     .name           = "dnxhd",
00995     .type           = AVMEDIA_TYPE_VIDEO,
00996     .id             = CODEC_ID_DNXHD,
00997     .priv_data_size = sizeof(DNXHDEncContext),
00998     .init           = dnxhd_encode_init,
00999     .encode         = dnxhd_encode_picture,
01000     .close          = dnxhd_encode_end,
01001     .capabilities = CODEC_CAP_SLICE_THREADS,
01002     .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_YUV422P10, PIX_FMT_NONE},
01003     .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
01004     .priv_class = &class,
01005 };
Generated on Fri Feb 1 2013 14:34:32 for FFmpeg by doxygen 1.7.1